Slide31.JPG

Slide32.JPG

Remove Ads

Transcript

Question 12 If ∫π‘₯^3 sin^4 (π‘₯^4 )cos(π‘₯^4 )𝑑π‘₯=π‘Žsin^5 (π‘₯^4 )+C, then π‘Ž is equal to (A) βˆ’1/10 (B) 1/20 (C) 1/4 (D) 1/5Finding ∫π‘₯^3 sin^4 (π‘₯^4 )cos(π‘₯^4 )𝑑π‘₯ Let 𝐭=𝐬𝐒𝐧⁑(𝒙^πŸ’ ) Differentiating t 𝒅𝒕/𝒅𝒙=〖𝒄𝒐𝒔 〗⁑(𝒙^πŸ’ ) Γ— (𝒙^πŸ’ )^β€² 𝑑𝑑/𝑑π‘₯=γ€–π‘π‘œπ‘  〗⁑(π‘₯^4 ) Γ— 4π‘₯^3 𝑑𝑑=γ€–π‘π‘œπ‘  〗⁑(π‘₯^4 )4π‘₯^3 𝑑π‘₯ 𝒅𝒕/πŸ’=〖𝒄𝒐𝒔 〗⁑(𝒙^πŸ’ ) 𝒙^πŸ‘ 𝒅𝒙 Now, ∫π‘₯^3 sin^4 (π‘₯^4 )cos(π‘₯^4 )𝑑π‘₯=∫1β–’(𝒕^πŸ’ 𝒅𝒕)/πŸ’ =1/4 ∫1▒〖𝑑^4 𝑑𝑑〗 =1/4 ×𝑑^5/5+𝐢 =𝟏/𝟐𝟎 𝒕^πŸ“+𝐢 Putting back 𝑑=𝑠𝑖𝑛⁑(π‘₯^4 ) =𝟏/𝟐𝟎 γ€–π’”π’Šπ’γ€—^πŸ“ (𝒙^πŸ’ ) +π‘ͺ Comparing with π’‚γ€–π’”π’Šπ’γ€—^πŸ“ (𝒙^πŸ’ )+𝐂, then π‘Ž is equal to 𝟏/𝟐𝟎 So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo