Chapter 7 Class 12 Integrals
Serial order wise

∫ e x Β  [f(x) + fβ€²(x)] dx

Β  = ∫ e x Β  f(x)dx + ∫ e x fβ€²(x) dx

Β  Using integration by parts

Β  = f(x) ∫ e x Β  dx - ∫ fβ€² (x) e x Β  dx + ∫ fβ€² (x) e x Β  dx

Β  = f(x) e x ∫ fβ€² (x) e x dx + ∫ fβ€² (x) e x dx

Β  = e x Β  f(x) + C

Based on the above information, answer any four of the following questions.

Β 

Integrals Class 12 MCQ -  βˆ«π‘’^π‘₯  [𝑓(π‘₯)+𝑓′ (π‘₯)] 𝑑π‘₯ = ∫1𝑒^ - Case Based Q - Case Based Questions (MCQ)

Question 1

∫e x   (sin⁑ x + cos ⁑x) dx = ______________.

(a) e x   cos⁑x + c  

(b) e x   sin⁑x + c  

(c) e x + c Β 

(d) e x (-cos⁑x + sin⁑x ) + c  

part 2 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 2

∫e x   (x - 1)/x 2 )  dx =______________.

(a) e x + c Β 

(b) e x /x + c Β 

(c) e x /x 2 + c Β 

(d) -e x /x 2 + c

part 3 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

part 4 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 3

∫e x   (1 + x) dx =______________.

(a) xe x + cΒ 

(b) e x + c Β 

(c) e -x + c Β 

(d) none of these

part 5 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 4

∫ Ο€ 0 e x (tan⁑x + sec 2 ⁑x) 𝑑π‘₯ = _________.

(a) 0 Β 

(b) 1Β 

(c) -1Β 

(d) -e Ο€

part 6 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 5

∫xe x /(1 + x) 2 dx =______________.

(a) xe x + cΒ 

(b) e x /(x + 1) 2 + c Β 

(c) x e x /x + 1 + cΒ 

(d) e x /x + 1 + cΒ 

part 8 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals part 9 - Question 2 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Question 2 ∫1▒〖𝑒^π‘₯ [𝑓(π‘₯)+𝑓^β€² (π‘₯)] γ€— 𝑑π‘₯ = ∫1▒〖𝒆^𝒙 𝒇(𝒙)𝒅𝒙〗+∫1▒〖𝑒^π‘₯ 𝑓′(π‘₯)𝑑π‘₯γ€— Using integration by parts = 𝒇(𝒙) ∫1▒𝒆^𝒙 π’…π’™βˆ’βˆ«1▒〖𝒇^β€² (𝒙) 𝒆^𝒙 γ€— 𝒅𝒙 + ∫1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ = 𝑓(π‘₯) 𝑒^π‘₯βˆ’βˆ«1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ + ∫1▒〖𝑓^β€² (π‘₯) 𝑒^π‘₯ γ€— 𝑑π‘₯ = 𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Based on the above information, answer any four of the following questions. Question 1 ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯=______________. (a) 𝑒^π‘₯ cos⁑π‘₯+𝑐 (b) 𝑒^π‘₯ sin⁑π‘₯+𝑐 (c) 𝑒^π‘₯+𝑐 (d) 𝑒^π‘₯ (βˆ’cos⁑π‘₯+sin⁑π‘₯ )+c ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯ Putting 𝒇(𝒙)=π’”π’Šπ’ 𝒙" " ∴ 𝒇^β€² (𝒙)=cos⁑π‘₯ Thus, ∫1▒〖𝑒^π‘₯ (sin⁑〖π‘₯ γ€—+cos⁑π‘₯)γ€— 𝑑π‘₯=𝒆^𝒙 π’”π’Šπ’ 𝒙+π‘ͺ So, the correct answer is (b) Question 2 ∫1▒〖𝑒^π‘₯ ((π‘₯ βˆ’ 1)/π‘₯^2 ) γ€— 𝑑π‘₯=______________. (a) 𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯/π‘₯+𝑐 (c) 𝑒^π‘₯/π‘₯^2 +𝑐 (d) γ€–βˆ’π‘’γ€—^π‘₯/π‘₯^2 +𝑐 ∫1▒〖𝑒^π‘₯ ((π‘₯ βˆ’ 1)/π‘₯^2 ) γ€— 𝑑π‘₯= ∫1▒〖𝑒π‘₯" " (π‘₯/π‘₯^2 βˆ’ 1/π‘₯2) 𝑑π‘₯γ€— = ∫1▒〖𝒆𝒙" " (𝟏/𝒙 βˆ’ 𝟏/π’™πŸ) 𝒅𝒙〗 Putting 𝒇(𝒙)=𝟏/𝒙 ∴ 𝒇^β€² (𝒙)=(βˆ’1)/π‘₯^2 Thus, ∫1▒〖𝑒π‘₯" " (1/π‘₯ βˆ’ 1/π‘₯2) 𝑑π‘₯γ€— = 𝒆^𝒙/𝒙+π‘ͺ So, the correct answer is (b) Question 3 ∫1▒〖𝑒^π‘₯ (1+π‘₯) γ€— 𝑑π‘₯=______________. (a) π‘₯𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯+𝑐 (c) 𝑒^(βˆ’π‘₯)+𝑐 (d) none of these ∫1▒〖𝑒^π‘₯ (1+π‘₯)γ€— 𝑑π‘₯=∫1▒〖𝒆^𝒙 (𝒙+𝟏)γ€— 𝒅𝒙 Putting 𝒇(𝒙)=𝒙 ∴ 𝒇^β€² (𝒙)=1 Thus, ∫1▒〖𝑒^π‘₯ (π‘₯+1)γ€— 𝑑π‘₯=𝒆^𝒙 Γ— 𝒙+π‘ͺ So, the correct answer is (a) Question 4 ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ = _________. (a) 0 (b) 1 (c) βˆ’1 (d) βˆ’π‘’^πœ‹ ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ Putting 𝒇(𝒙)=𝒕𝒂𝒏 𝒙" " ∴ 𝒇^β€² (𝒙)=〖𝑠𝑒𝑐〗^2⁑π‘₯ Thus, ∫1_0^πœ‹β–’π‘’^π‘₯ (tan⁑π‘₯+sec^2⁑π‘₯) 𝑑π‘₯ = γ€–[𝒆^𝒙 𝒕𝒂𝒏 𝒙]γ€—_0^πœ‹ =[𝒆^𝒙 𝒕𝒂𝒏 πœ‹βˆ’π’†^𝒙 𝒕𝒂𝒏 𝟎] =[𝒆^𝒙 𝒕𝒂𝒏 πœ‹βˆ’π’†^𝒙 𝒕𝒂𝒏 𝟎] =[𝒆^𝒙 Γ— πŸŽβˆ’π’†^𝒙 Γ— 𝟎] =0βˆ’0 =0 So, the correct answer is (a) Question 5 ∫1β–’γ€–γ€–π‘₯𝑒〗^π‘₯/(1 + π‘₯)^2 γ€— 𝑑π‘₯=______________. (a) π‘₯𝑒^π‘₯+𝑐 (b) 𝑒^π‘₯/(π‘₯ + 1)^2 +𝑐 (c) (π‘₯ 𝑒^π‘₯)/(π‘₯ + 1)+𝑐 (d) 𝑒^π‘₯/(π‘₯ + 1)+𝑐 ∫1▒〖𝑒^π‘₯ ((π‘₯ )/(1 + π‘₯)^2 ) γ€— 𝑑π‘₯= ∫1▒〖𝑒π‘₯" " ((1 + π‘₯ βˆ’ 1 )/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— =" " ∫1▒〖𝑒π‘₯" " ((1 + π‘₯ )/(1 + π‘₯)^2 βˆ’1/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— =" " ∫1▒〖𝒆𝒙" " (𝟏/((𝟏 + 𝒙))βˆ’πŸ/(𝟏 + 𝒙)^𝟐 ) 𝒅𝒙〗 It is of form ∫1▒〖𝒆^𝒙 (𝒇(𝒙)+𝒇^β€² (𝒙)) γ€— 𝒅𝒙=𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Putting 𝒇(𝒙)=𝟏/((𝟏 + 𝒙)) ∴ 𝒇^β€² (𝒙)=(βˆ’1)/(𝟏 + 𝒙)^2 Thus, ∫1▒〖𝑒π‘₯" " (1/((1 + π‘₯))βˆ’1/(1 + π‘₯)^2 ) 𝑑π‘₯γ€— = 𝒆^𝒙/((𝟏 + 𝒙))+π‘ͺ So, the correct answer is (d)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo