The set of points where the function f given by f (x) = |2xβˆ’1| sin x is differentiable is

(A)RΒ  Β  Β 

(B) R βˆ’ {1/2}Β 

(C) (0, ∞)    

(D) none of these

This question is similar to Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability

[MCQ] The set of points where f(x) = |2x βˆ’ 1| sin x is differentiable - NCERT Exemplar - MCQs

part 2 - Question 13 - NCERT Exemplar - MCQs - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 3 - Question 13 - NCERT Exemplar - MCQs - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Question 13 The set of points where the function f given by f (x) = |2xβˆ’1| sin x is differentiable is R (B) R βˆ’ {1/2} (C) (0, ∞) (D) none of these f(x) = |2π‘₯βˆ’1| sin⁑π‘₯ = {β–ˆ((2π‘₯βˆ’1) sin⁑π‘₯, 2π‘₯βˆ’1β‰₯0@βˆ’(2π‘₯βˆ’1) sin⁑π‘₯, 2π‘₯βˆ’1<0)─ = {β–ˆ((2π‘₯βˆ’1) sin⁑π‘₯, π‘₯β‰₯1/2@βˆ’(2π‘₯βˆ’1) sin⁑〖π‘₯ ,γ€— π‘₯<1/2)─ Now, f(x) is a differentiable at x = 1/2 if LHD = RHD (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝒇(𝒙) βˆ’ 𝒇(𝒙 βˆ’ 𝒉))/𝒉 = (π‘™π‘–π‘š)┬(hβ†’0) (𝑓(1/2) βˆ’ 𝑓(1/2 βˆ’ β„Ž))/β„Ž =(π‘™π‘–π‘š)┬(hβ†’0) (|2(1/2)βˆ’1| sin⁑(1/2)βˆ’|2(1/2 βˆ’ β„Ž)βˆ’ 1| sin⁑(1/2 βˆ’β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (0 βˆ’|1 βˆ’ β„Ž βˆ’ 1| γ€–sin 〗⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (0 βˆ’|βˆ’ β„Ž| sin⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (βˆ’β„Ž γ€–sin 〗⁑(1/2 βˆ’ β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) βˆ’sin⁑(1/2 βˆ’ β„Ž) = βˆ’sin⁑(1/2βˆ’0) = βˆ’π‘ π‘–π‘› 1/2 = βˆ’ 𝝅/πŸ” (π’π’Šπ’Ž)┬(π‘β†’πŸŽ) (𝒇(𝒙+𝒉) βˆ’ 𝒇(𝒙 ))/𝒉 = (π‘™π‘–π‘š)┬(hβ†’0) (𝑓(1/2+β„Ž) βˆ’ 𝑓(1/2))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|(2(1/2+β„Ž)βˆ’1| 𝑠𝑖𝑛⁑(1/2+β„Ž)βˆ’|2(1/2)βˆ’1| 𝑠𝑖𝑛⁑(1/2))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|1+ β„Ž βˆ’1| γ€–sin 〗⁑〖(1/2 + β„Ž) γ€—βˆ’ 0 )/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (|β„Ž| γ€–sin 〗⁑(1/2+β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) (β„Ž γ€–sin 〗⁑(1/2+β„Ž))/β„Ž = (π‘™π‘–π‘š)┬(hβ†’0) sin⁑(1/2+β„Ž) = γ€–sin 〗⁑(1/2+0) = sin 1/2 = 𝝅/πŸ” Since LHD β‰  RHD ∴ f(x) is not differentiable at x = 1/2 Hence, we can say that f(x) is differentiable on R βˆ’ {𝟏/𝟐} So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo