The set of points where the functions f given by f (x) = |x โ€“ 3| cos x is differentiable is

(A) R ย 

(B) R โˆ’ {3}

(C) (0, โˆž)ย 

(D) None of these

This question is similar to Ex 5.2, 9 - Chapter 5 Class 12 - Continuity and Differentiability

The set of points where f(x) = |x โ€“ 3| cos x is differentiable is [MCQ - NCERT Exemplar - MCQs

part 2 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 3 - Question 8 - NCERT Exemplar - MCQs - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Question 8 The set of points where the functions f given by f (x) = |x โ€“ 3| cos x is differentiable is (A) R (B) R โˆ’ {3} (C) (0, โˆž) (D) None of these f(x) = |๐‘ฅโˆ’3| cosโก๐‘ฅ = {โ–ˆ((๐‘ฅโˆ’3) cosโก๐‘ฅ, ๐‘ฅโˆ’3โ‰ฅ0@โˆ’(๐‘ฅโˆ’3) cosโก๐‘ฅ, ๐‘ฅโˆ’3<0)โ”ค = {โ–ˆ((๐‘ฅโˆ’3) cosโก๐‘ฅ, ๐‘ฅโ‰ฅ3@โˆ’(๐‘ฅโˆ’3) cosโก๐‘ฅ, ๐‘ฅ<3)โ”ค Now, f(x) is a differentiable at x = 3 if LHD = RHD (๐’๐’Š๐’Ž)โ”ฌ(๐กโ†’๐ŸŽ) (๐’‡(๐’™) โˆ’ ๐’‡(๐’™ โˆ’ ๐’‰))/๐’‰ = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (๐‘“(3) โˆ’ ๐‘“(3 โˆ’ โ„Ž))/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|3 โˆ’ 3| cosโก3โˆ’|(3 โˆ’ โ„Ž)โˆ’3| cosโกใ€–(3 โˆ’ โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (0 โˆ’|3 โˆ’ โ„Ž โˆ’3| cosโกใ€–(3 โˆ’ โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (0 โˆ’|โˆ’โ„Ž| cosโกใ€–(3 โˆ’ โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (โˆ’โ„Ž cosโกใ€–(3 โˆ’ โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) โˆ’cosโกใ€–(3 โˆ’โ„Ž)ใ€— = โˆ’cosโกใ€–(3 โˆ’0)ใ€— = โˆ’๐’„๐’๐’”โก๐Ÿ‘ (๐’๐’Š๐’Ž)โ”ฌ(๐กโ†’๐ŸŽ) (๐’‡(๐’™+๐’‰) โˆ’ ๐’‡(๐’™ ))/๐’‰ = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (๐‘“(3+โ„Ž) โˆ’ ๐‘“(3))/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|(3+โ„Ž) โˆ’ 3| cosโกใ€–(3+โ„Ž)ใ€—โˆ’|3 โˆ’ 3| cosโกใ€–(3)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (|3 + โ„Ž โˆ’3| cosโก(3 + โ„Ž)โˆ’0 )/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (| โ„Ž| cosโกใ€–(3+โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) (โ„Ž cosโกใ€–(3 + โ„Ž)ใ€—)/โ„Ž = (๐‘™๐‘–๐‘š)โ”ฌ(hโ†’0) cosโกใ€–(3+โ„Ž)ใ€— = cosโกใ€–(3+0)ใ€— = ๐’„๐’๐’”โก๐Ÿ‘ Since LHD โ‰  RHD โˆด f(x) is not differentiable at x = 3 Hence, we can say that f(x) is differentiable on R โˆ’ {๐Ÿ‘} So, the correct answer is (B)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo