Ex 2.4
Ex 2.4, 1 (ii)
Ex 2.4, 1 (iii) Important
Ex 2.4, 1 (iv)
Ex 2.4, 1 (v)
Ex 2.4, 2 (i)
Ex 2.4, 2 (ii) Important
Ex 2.4, 2 (iii)
Ex 2.4, 3 (i)
Ex 2.4, 3 (ii) Important
Ex 2.4, 3 (iii)
Ex 2.4, 4 (i)
Ex 2.4, 4 (ii)
Ex 2.4, 4 (iii) Important
Ex 2.4, 4 (iv)
Ex 2.4, 4 (v)
Ex 2.4, 4 (vi)
Ex 2.4, 5 (i)
Ex 2.4, 5 (ii) Important
Ex 2.4, 6 (i)
Ex 2.4, 6 (ii)
Ex 2.4, 6 (iii)
Ex 2.4, 6 (iv) Important
Ex 2.4, 7 (i)
Ex 2.4, 7 (ii)
Ex 2.4, 7 (iii) Important
Ex 2.4, 8 (i)
Ex 2.4, 8 (ii)
Ex 2.4, 8 (iii) Important
Ex 2.4, 8 (iv) Important
Ex 2.4, 8 (v)
Ex 2.4, 9 (i)
Ex 2.4, 9 (ii)
Ex 2.4, 10 (i) Important
Ex 2.4, 10 (ii)
Ex 2.4, 11
Ex 2.4,12 Important
Ex 2.4,13
Ex 2.4, 14 (i)
Ex 2.4, 14 (ii) Important
Ex 2.4, 15 (i)
Ex 2.4, 15 (ii) Important
Ex 2.4, 16 (i)
Ex 2.4, 16 (ii) Important You are here
Ex 2.4
Last updated at Dec. 16, 2024 by Teachoo
Ex 2.4, 16 What are the possible expressions for the dimensions of the cuboids whose volumes are given below? (ii) Volume : 12ky2 + 8ky – 20k First we factorize 12ky2 + 8ky – 20k = 4k (3y2 + 2y – 5) We factorize (3y2 + 2y – 5) separately 3y2 + 2y – 5 = 3y2 + 5y – 3y – 5 = y (3y + 5) – 1 (3y + 5) = (3y + 5) (y – 1) Thus, 12ky2 + 8ky – 20k = 4k (3y + 5) (y – 1) So, Volume = 4k (3y + 5) (y – 1) We know that Volume of cuboid = Length × Breadth × Height Possible dimensions can be Length = 4k, Breadth = 3y + 5 , Height = y – 1