Ex 2.4
Ex 2.4, 1 (ii)
Ex 2.4, 1 (iii) Important
Ex 2.4, 1 (iv)
Ex 2.4, 1 (v)
Ex 2.4, 2 (i)
Ex 2.4, 2 (ii) Important
Ex 2.4, 2 (iii)
Ex 2.4, 3 (i)
Ex 2.4, 3 (ii) Important
Ex 2.4, 3 (iii)
Ex 2.4, 4 (i)
Ex 2.4, 4 (ii)
Ex 2.4, 4 (iii) Important
Ex 2.4, 4 (iv)
Ex 2.4, 4 (v)
Ex 2.4, 4 (vi)
Ex 2.4, 5 (i)
Ex 2.4, 5 (ii) Important
Ex 2.4, 6 (i)
Ex 2.4, 6 (ii)
Ex 2.4, 6 (iii)
Ex 2.4, 6 (iv) Important
Ex 2.4, 7 (i)
Ex 2.4, 7 (ii)
Ex 2.4, 7 (iii) Important
Ex 2.4, 8 (i)
Ex 2.4, 8 (ii)
Ex 2.4, 8 (iii) Important
Ex 2.4, 8 (iv) Important
Ex 2.4, 8 (v)
Ex 2.4, 9 (i)
Ex 2.4, 9 (ii)
Ex 2.4, 10 (i) Important
Ex 2.4, 10 (ii)
Ex 2.4, 11
Ex 2.4,12 Important You are here
Ex 2.4,13
Ex 2.4, 14 (i)
Ex 2.4, 14 (ii) Important
Ex 2.4, 15 (i)
Ex 2.4, 15 (ii) Important
Ex 2.4, 16 (i)
Ex 2.4, 16 (ii) Important
Ex 2.4
Last updated at Dec. 13, 2024 by Teachoo
Ex 2.4, 12 Verify that x3 + y3 + z3 – 3xyz = 1/2 (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2] Solving R.H.S 1/2 (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2] Using (a - b)2 = a2 + b2 - 2ab = 1/2 (x + y + z) [ (x2 + y2 – 2xy) + (y2 + z2 – 2yz) + (z2 + x2 – 2zx)] = 1/2 (x + y + z) [2x2 + 2y2 + 2z2 – 2xy– 2yz – 2zx] = 1/2 (x + y + z) 2 [x2 + y2 + z2 – xy – yz – zx] = (x + y + z) [x2 + y2 + z2 – xy – yz – zx] We know x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx) = x3 + y3 + z3 – 3xyz = L.H.S