Check sibling questions


Transcript

Misc 12 Find a particular solution of the differential equation (๐‘ฅ+1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=2 ๐‘’^(โˆ’๐‘ฆ)โˆ’1 , given that ๐‘ฆ=0 when ๐‘ฅ=0 (๐‘ฅ+1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=2๐‘’^(โˆ’๐‘ฆ)โˆ’1 The variables are separable ๐’…๐’š/(๐Ÿ๐’†^( โˆ’๐’š ) โˆ’ ๐Ÿ) = ๐’…๐’™/(๐’™ + ๐Ÿ) Integrating both sides โˆซ1โ–’๐‘‘๐‘ฆ/(2๐‘’^(โˆ’๐‘ฆ) โˆ’ 1) = โˆซ1โ–’๐‘‘๐‘ฅ/(๐‘ฅ + 1) โˆซ1โ–’๐‘‘๐‘ฆ/(2/๐‘’^๐‘ฆ โˆ’ 1) = log (x + 1) + c โˆซ1โ–’๐‘‘๐‘ฆ/((2 โˆ’ ๐‘’^๐‘ฆ)/๐‘’^๐‘ฆ ) = log (x + 1) + C โˆซ1โ–’๐’†^๐’š/(๐Ÿ โˆ’ใ€– ๐’†ใ€—^๐’š ) dy = log (x + 1) + C Putting t = ๐Ÿโˆ’๐’†^๐’š dt = โˆ’๐‘’^๐‘ฆdy โ€“dt = ๐‘’^๐‘ฆdy Putting value of t & dt in equation โˆซ1โ–’(โˆ’๐‘‘๐‘ก)/๐‘ก = log (x + 1) + c โˆ’ log t = log (x + 1) + c Putting back value of t โˆ’ log (2 โˆ’ ๐‘’^๐‘ฆ) = log (x + 1) + C 0 = log (x + 1) + log (2 โˆ’ ๐‘’^๐‘ฆ) + C log (x + 1) + log (2 โˆ’ ๐’†^๐’š) + C = 0 Given y = 0 when x = 0 Putting x = 0 & y = 0 in (1) log (0 + 1) + log (2 โˆ’ e0) + C = 0 log 1 + log (2 โˆ’ 1) + C = 0 log 1 + log 1 + C = 0 0 + 0 + C = 0 C = 0 Putting value of C in (1) log (x + 1) + log (2 โˆ’ ๐‘’^๐‘ฆ) + 0 = 0 log (x + 1) + log (2 โˆ’ ๐‘’^๐‘ฆ) = 0 log (2 โˆ’ ey) = โ€“ log (x + 1) log (2 โˆ’ ey) = log (x + 1)โ€“1 log (2 โˆ’ ey) = log (๐Ÿ/(๐’™ + ๐Ÿ)) 2 โˆ’ ey = ๐Ÿ/(๐’™ + ๐Ÿ) ey = 2โˆ’1/(๐‘ฅ + 1) ey = (2๐‘ฅ + 2 โˆ’ 1)/(๐‘ฅ + 1) ey = (2๐‘ฅ + 1)/(๐‘ฅ + 1) Taking log both sides y = log |(๐Ÿ๐’™ + ๐Ÿ)/(๐’™ + ๐Ÿ)| , x โ‰  โˆ’1

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo