Misc 6 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 6 Find the equation of the curve passing through the point (0 , π/4) whose differential equation is sin π₯ cosβ‘γπ¦ ππ₯+cosβ‘γπ₯ sinβ‘γπ¦ ππ¦=0γ γ γ sin x cos y dx + cos x sin y dy = 0 sin x cos y dx = β cos x sin y dy γπ¬π’π§ γβ‘π/ππ¨π¬β‘π π π = β πππβ‘π/πππβ‘π π π Put cos x = u Diff w.r.t. x π/ππ₯ cosβ‘γπ₯=ππ’/ππ₯ γ βsin x = ππ’/ππ₯ dx = (βπ π)/πππβ‘π Put cos y = v Diff w.r.t. y π/ππ¦ cosβ‘γπ¦=ππ£/ππ¦ γ βsin y = ππ£/ππ¦ dy = (βπ π)/πππβ‘π Integrating both sides β«1βsinβ‘γπ₯ ππ₯γ/cosβ‘π₯ = β«1βγβsinγβ‘γπ¦ ππ¦γ/cosβ‘π¦ β΄ β«1βγsinβ‘π₯/π’ Γ (βππ’)/sinβ‘π₯ γ= β«1βγ(βsinβ‘π¦)/π£ Γ (βππ£)/sinβ‘π¦ γ β«1βπ π/π=ββ«1βπ π/π log |π’|=βπππ|π£|+π log |π’| + log |π£| = c log |π’.π£|=π Putting back values of u and v. log |ππ¨π¬β‘γπ.ππ¨π¬β‘π γ |= βc Since the curve passes through (π, π /π) Putting x = 0 and y = π/4 in (1) log |cosβ‘(0).cosβ‘(π/4)|=π log |1. 1/β2|=π β΄ c = log π/βπ Substitute value of C in (2) log |cosβ‘γπ₯ cosβ‘π¦ γ |=π log |ππ¨π¬β‘γπ.ππ¨π¬β‘π γ |=π₯π¨π β‘|π/βπ| β΄ cos x. cos y = π/βπ cos y = 1/(β2 cosβ‘π₯ ) cos y = (πππ π)/βπ
Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 You are here
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13 (MCQ)
Misc 14 (MCQ) Important
Misc 15 (MCQ)
Question 1
Question 2 Important
Question 3 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo