Check sibling questions


Transcript

Misc 3 Prove that ๐‘ฅ^2โˆ’๐‘ฆ^2=๐‘(๐‘ฅ^2+๐‘ฆ^2 )^2 is the general solution of differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ, where ๐‘ is a parameter .Given differential equation (๐‘ฅ^3โˆ’3๐‘ฅ๐‘ฆ^2 )๐‘‘๐‘ฅ=(๐‘ฆ^3โˆ’3๐‘ฅ^2 ๐‘ฆ)๐‘‘๐‘ฆ (๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^3 โˆ’ 3๐‘ฅ^2 ๐‘ฆ)=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 โˆ’ 3๐‘ฅ๐‘ฆ^2)/(๐‘ฆ^(3 )โˆ’ 3๐‘ฅ^2 ๐‘ฆ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฅ๐‘ฆ^2)/๐‘ฅ^3 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2 ๐‘ฆ)/๐‘ฆ^3 ) ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘ฅ^3 (1 โˆ’ (3๐‘ฆ^2)/๐‘ฅ^2 ))/(๐‘ฆ^(3 ) (1 โˆ’(3๐‘ฅ^2)/๐‘ฆ^2 ) ) ๐’…๐’š/๐’…๐’™=(๐’™/๐’š)^๐Ÿ‘ร—((๐Ÿ โˆ’ ๐Ÿ‘(๐’š/๐’™)^๐Ÿ ))/((๐Ÿ โˆ’ ๐Ÿ‘(๐’™/๐’š)^๐Ÿ ) ) Putting y = vx. Differentiating w.r.t. x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + ๐‘ฃ Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =(1/๐‘ฃ)^3ร—((1 โˆ’ 3๐‘ฃ^2 ))/((1 โˆ’ 3(1/๐‘ฃ)^2 ) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ+๐‘ฃ =1/๐‘ฃ^3 ร—((1 โˆ’ 3๐‘ฃ^2 ))/(((๐‘ฃ^2 โˆ’ 3)/๐‘ฃ^2 ) ) ๐’™ ๐’…๐’—/๐’…๐’™+๐’— =๐Ÿ/๐’—ร—((๐Ÿ โˆ’ ๐Ÿ‘๐’—^๐Ÿ ))/((๐’—^๐Ÿ โˆ’ ๐Ÿ‘) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ))/((๐‘ฃ^2 โˆ’ 3) )โˆ’๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—((1 โˆ’ 3๐‘ฃ^2 ) โˆ’ ๐‘ฃ ร— ๐‘ฃ (๐‘ฃ^2 โˆ’ 3))/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ 3๐‘ฃ^2 โˆ’ ๐‘ฃ^4 + 3๐‘ฃ^2)/((๐‘ฃ^2 โˆ’ 3) ) ๐‘ฅ ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ=1/๐‘ฃร—(1 โˆ’ ๐‘ฃ^4)/((๐‘ฃ^2 โˆ’ 3) ) ๐’™ ๐’…๐’—/๐’…๐’™=(๐Ÿ โˆ’ ๐’—^๐Ÿ’)/((๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—) ) (๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’—)๐’…๐’—/((๐Ÿ โˆ’๐’—^๐Ÿ’ ) )=๐’…๐’™/๐’™ Integrating Both Sides โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€—=โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’ใ€–(๐’—^๐Ÿ‘ โˆ’๐Ÿ‘๐’— )/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’—ใ€—=๐ฅ๐จ๐ โกใ€–|๐’™|ใ€—+๐‘ช Let I = โˆซ1โ–’(๐’—^๐Ÿ‘ โˆ’ ๐Ÿ‘๐’—)/(๐Ÿ โˆ’ ๐’—^๐Ÿ’ ) ๐’…๐’— Therefore, ๐ผ =logโกใ€–|๐‘ฅ|+๐‘ใ€— Solving ๐‘ฐ ๐ผ =โˆซ1โ–’ใ€–(๐‘ฃ^3 โˆ’3๐‘ฃ )/(1 โˆ’ ๐‘ฃ^4 ) ๐‘‘๐‘ฃใ€— =โˆซ1โ–’ใ€–(๐‘ฃ^3 )/(1 โˆ’ ๐‘ฃ^4 )โˆ’3โˆซ1โ–’ใ€–๐‘ฃ/(1 โˆ’ใ€– ๐‘ฃใ€—^4 ) ๐‘‘๐‘ฃใ€—ใ€— Put ๐’—^๐Ÿ’โˆ’๐Ÿ=๐’• Diff. w.r.t. ๐‘ฃ ๐‘‘/๐‘‘๐‘ฃ (๐‘ฃ^4โˆ’1)=๐‘‘๐‘ก/๐‘‘๐‘ฃ 4๐‘ฃ^3=๐‘‘๐‘ก/๐‘‘๐‘ฃ ๐‘‘๐‘ฃ=๐‘‘๐‘ก/(4๐‘ฃ^3 ) Put ๐’‘=๐’—^๐Ÿ Diff. w.r.t. ๐‘ฃ ๐‘‘๐‘/๐‘‘๐‘ฃ=2๐‘ฃ ๐‘‘๐‘/2๐‘ฃ=๐‘‘๐‘ฃ ๐‘ฐ =โˆซ1โ–’ใ€–๐’—^๐Ÿ‘/(โˆ’๐’•) ๐’…๐’•/(๐Ÿ’๐’—^๐Ÿ‘ ) โˆ’๐Ÿ‘โˆซ1โ–’ใ€–๐’—/(๐Ÿ โˆ’ ๐’‘^๐Ÿ ) ๐’…๐’‘/๐Ÿ๐’—ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘กโˆ’3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/(1 โˆ’ ๐‘^2 )ใ€—ใ€— ๐ผ =โˆ’1/4 โˆซ1โ–’ใ€– ๐‘‘๐‘ก/๐‘ก+3/2 โˆซ1โ–’ใ€– ๐‘‘๐‘/((๐‘^2 โˆ’ 1^2 ) )ใ€—ใ€— ๐‘ฐ = (โˆ’๐Ÿ)/( ๐Ÿ’) ๐ฅ๐จ๐ โก๐’•+๐Ÿ‘/๐Ÿ ร— ๐Ÿ/(๐Ÿ(๐Ÿ)) ๐’๐’๐’ˆ((๐’‘ โˆ’ ๐Ÿ)/(๐’‘ + ๐Ÿ)) Putting t = ๐‘ฃ^4 โˆ’ 1 and p = v2 I = (โˆ’๐Ÿ)/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ) ใ€—+๐Ÿ‘/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/((๐’—^๐Ÿ + ๐Ÿ))ใ€— I = 1/4 [โˆ’logโกใ€–(๐‘ฃ^4โˆ’1)+3 ๐‘™๐‘œ๐‘” ((๐‘ฃ^2 โˆ’ 1))/((๐‘ฃ^2 + 1))ใ€— ] I = 1/4 [โˆ’๐’๐จ๐ โกใ€–(๐’—^๐Ÿ’โˆ’๐Ÿ)+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 [๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ร— 1/((๐‘ฃ^4 โˆ’ 1))] I = 1/4 [๐’๐’๐’ˆโกใ€–๐Ÿ/((๐’—^๐Ÿ’โˆ’๐Ÿ) )+ ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 ใ€— ] I = 1/4 ๐’๐’๐’ˆ ๐Ÿ/((๐’—^๐Ÿ’ โˆ’ ๐Ÿ))ร—(๐’—^๐Ÿ โˆ’ ๐Ÿ)^๐Ÿ‘/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ‘ I = 1/4 ๐‘™๐‘œ๐‘” 1/((๐‘ฃ^2 โˆ’ 1)(๐‘ฃ^2 + 1))ร—(๐‘ฃ^2 โˆ’ 1)^3/(๐‘ฃ^2 + 1)^3 I = 1/4 ๐‘™๐‘œ๐‘” (๐‘ฃ^2 โˆ’ 1)^2/(๐‘ฃ^2 + 1)^4 I = ๐Ÿ/๐Ÿ’ ๐ฅ๐จ๐ โกใ€–(((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ )^๐Ÿ ใ€— I = 1/4 ร— 2 logโกใ€–((๐‘ฃ^2 โˆ’ 1))/(๐‘ฃ^2 + 1)^2 ใ€— I = ๐Ÿ/๐Ÿ ๐’๐’๐’ˆโกใ€–((๐’—^๐Ÿ โˆ’ ๐Ÿ))/(๐’—^๐Ÿ + ๐Ÿ)^๐Ÿ ใ€— Putting back v = ๐‘ฆ/๐‘ฅ I = 1/2 logโกใ€–(((๐‘ฆ/๐‘ฅ)^2 โˆ’ 1))/((๐‘ฆ/๐‘ฅ)^2 + 1)^2 ใ€— I = 1/2 log (((๐‘ฆ^2 โˆ’ ๐‘ฅ2)/๐‘ฅ^2 )/((๐‘ฆ^2 + ๐‘ฅ2)/๐‘ฅ^2 )^2 ) I = ๐Ÿ/๐Ÿ log [(๐’™๐Ÿ(๐’š^๐Ÿ โˆ’ ๐’™^๐Ÿ))/(๐’š^๐Ÿ + ๐’™^๐Ÿ )^๐Ÿ ] Substituting value of I in (2) I = log |x| + c ๐Ÿ/๐Ÿ log โŒˆ(๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/((๐’š๐Ÿ + ๐’™๐Ÿ))โŒ‰ = log |x| + c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = 2 log |x| + 2c log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/((๐‘ฅ2 + ๐‘ฆ2))โŒ‰ = log |x|2 + log c1 log โŒˆ(๐‘ฅ2(๐‘ฆ2 โˆ’ ๐‘ฅ2))/(๐‘ฅ2 + ๐‘ฆ2)^2 โŒ‰ = log c1|x|2 Cancelling log (๐’™๐Ÿ(๐’š๐Ÿ โˆ’ ๐’™๐Ÿ))/(๐’™๐Ÿ + ๐’š๐Ÿ)^๐Ÿ = c1 x2 x2 (y2 โˆ’ x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 โˆ’ x2 = c1 (x2 + y2)2 x2 โˆ’ y2 = c2 (x2 + y2)2 Hence proved

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo