Misc 3 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 3 Prove that ๐ฅ^2โ๐ฆ^2=๐(๐ฅ^2+๐ฆ^2 )^2 is the general solution of differential equation (๐ฅ^3โ3๐ฅ๐ฆ^2 )๐๐ฅ=(๐ฆ^3โ3๐ฅ^2 ๐ฆ)๐๐ฆ, where ๐ is a parameter .Given differential equation (๐ฅ^3โ3๐ฅ๐ฆ^2 )๐๐ฅ=(๐ฆ^3โ3๐ฅ^2 ๐ฆ)๐๐ฆ (๐ฅ^3 โ 3๐ฅ๐ฆ^2)/(๐ฆ^3 โ 3๐ฅ^2 ๐ฆ)=๐๐ฆ/๐๐ฅ ๐๐ฆ/๐๐ฅ=(๐ฅ^3 โ 3๐ฅ๐ฆ^2)/(๐ฆ^(3 )โ 3๐ฅ^2 ๐ฆ) ๐๐ฆ/๐๐ฅ=(๐ฅ^3 (1 โ (3๐ฅ๐ฆ^2)/๐ฅ^3 ))/(๐ฆ^(3 ) (1 โ(3๐ฅ^2 ๐ฆ)/๐ฆ^3 ) ) ๐๐ฆ/๐๐ฅ=(๐ฅ^3 (1 โ (3๐ฆ^2)/๐ฅ^2 ))/(๐ฆ^(3 ) (1 โ(3๐ฅ^2)/๐ฆ^2 ) ) ๐ ๐/๐ ๐=(๐/๐)^๐ร((๐ โ ๐(๐/๐)^๐ ))/((๐ โ ๐(๐/๐)^๐ ) ) Putting y = vx. Differentiating w.r.t. x ๐๐ฆ/๐๐ฅ = ๐ฅ ๐๐ฃ/๐๐ฅ + ๐ฃ Putting value of ๐๐ฆ/๐๐ฅ and y = vx in (1) ๐ฅ ๐๐ฃ/๐๐ฅ+๐ฃ =(1/๐ฃ)^3ร((1 โ 3๐ฃ^2 ))/((1 โ 3(1/๐ฃ)^2 ) ) ๐ฅ ๐๐ฃ/๐๐ฅ+๐ฃ =1/๐ฃ^3 ร((1 โ 3๐ฃ^2 ))/(((๐ฃ^2 โ 3)/๐ฃ^2 ) ) ๐ ๐ ๐/๐ ๐+๐ =๐/๐ร((๐ โ ๐๐^๐ ))/((๐^๐ โ ๐) ) ๐ฅ ๐๐ฃ/๐๐ฅ=1/๐ฃร((1 โ 3๐ฃ^2 ))/((๐ฃ^2 โ 3) )โ๐ฃ ๐ฅ ๐๐ฃ/๐๐ฅ=1/๐ฃร((1 โ 3๐ฃ^2 ) โ ๐ฃ ร ๐ฃ (๐ฃ^2 โ 3))/((๐ฃ^2 โ 3) ) ๐ฅ ๐๐ฃ/๐๐ฅ=1/๐ฃร(1 โ 3๐ฃ^2 โ ๐ฃ^4 + 3๐ฃ^2)/((๐ฃ^2 โ 3) ) ๐ฅ ๐๐ฃ/๐๐ฅ=1/๐ฃร(1 โ ๐ฃ^4)/((๐ฃ^2 โ 3) ) ๐ ๐ ๐/๐ ๐=(๐ โ ๐^๐)/((๐^๐ โ ๐๐) ) (๐^๐ โ๐๐)๐ ๐/((๐ โ๐^๐ ) )=๐ ๐/๐ Integrating Both Sides โซ1โใ(๐ฃ^3 โ3๐ฃ )/(1 โ ๐ฃ^4 ) ๐๐ฃใ=โซ1โ๐๐ฅ/๐ฅ โซ1โใ(๐^๐ โ๐๐ )/(๐ โ ๐^๐ ) ๐ ๐ใ=๐ฅ๐จ๐ โกใ|๐|ใ+๐ช Let I = โซ1โ(๐^๐ โ ๐๐)/(๐ โ ๐^๐ ) ๐ ๐ Therefore, ๐ผ =logโกใ|๐ฅ|+๐ใ Solving ๐ฐ ๐ผ =โซ1โใ(๐ฃ^3 โ3๐ฃ )/(1 โ ๐ฃ^4 ) ๐๐ฃใ =โซ1โใ(๐ฃ^3 )/(1 โ ๐ฃ^4 )โ3โซ1โใ๐ฃ/(1 โใ ๐ฃใ^4 ) ๐๐ฃใใ Put ๐^๐โ๐=๐ Diff. w.r.t. ๐ฃ ๐/๐๐ฃ (๐ฃ^4โ1)=๐๐ก/๐๐ฃ 4๐ฃ^3=๐๐ก/๐๐ฃ ๐๐ฃ=๐๐ก/(4๐ฃ^3 ) Put ๐=๐^๐ Diff. w.r.t. ๐ฃ ๐๐/๐๐ฃ=2๐ฃ ๐๐/2๐ฃ=๐๐ฃ ๐ฐ =โซ1โใ๐^๐/(โ๐) ๐ ๐/(๐๐^๐ ) โ๐โซ1โใ๐/(๐ โ ๐^๐ ) ๐ ๐/๐๐ใใ ๐ผ =โ1/4 โซ1โใ ๐๐ก/๐กโ3/2 โซ1โใ ๐๐/(1 โ ๐^2 )ใใ ๐ผ =โ1/4 โซ1โใ ๐๐ก/๐ก+3/2 โซ1โใ ๐๐/((๐^2 โ 1^2 ) )ใใ ๐ฐ = (โ๐)/( ๐) ๐ฅ๐จ๐ โก๐+๐/๐ ร ๐/(๐(๐)) ๐๐๐((๐ โ ๐)/(๐ + ๐)) Putting t = ๐ฃ^4 โ 1 and p = v2 I = (โ๐)/๐ ๐ฅ๐จ๐ โกใ(๐^๐โ๐) ใ+๐/๐ ๐ฅ๐จ๐ โกใ((๐^๐ โ ๐))/((๐^๐ + ๐))ใ I = 1/4 [โlogโกใ(๐ฃ^4โ1)+3 ๐๐๐ ((๐ฃ^2 โ 1))/((๐ฃ^2 + 1))ใ ] I = 1/4 [โ๐๐จ๐ โกใ(๐^๐โ๐)+ ๐๐๐ (๐ฃ^2 โ 1)^3/(๐ฃ^2 + 1)^3 ใ ] I = 1/4 [๐๐๐ (๐ฃ^2 โ 1)^3/(๐ฃ^2 + 1)^3 ร 1/((๐ฃ^4 โ 1))] I = 1/4 [๐๐๐โกใ๐/((๐^๐โ๐) )+ ๐๐๐ (๐ฃ^2 โ 1)^3/(๐ฃ^2 + 1)^3 ใ ] I = 1/4 ๐๐๐ ๐/((๐^๐ โ ๐))ร(๐^๐ โ ๐)^๐/(๐^๐ + ๐)^๐ I = 1/4 ๐๐๐ 1/((๐ฃ^2 โ 1)(๐ฃ^2 + 1))ร(๐ฃ^2 โ 1)^3/(๐ฃ^2 + 1)^3 I = 1/4 ๐๐๐ (๐ฃ^2 โ 1)^2/(๐ฃ^2 + 1)^4 I = ๐/๐ ๐ฅ๐จ๐ โกใ(((๐^๐ โ ๐))/(๐^๐ + ๐)^๐ )^๐ ใ I = 1/4 ร 2 logโกใ((๐ฃ^2 โ 1))/(๐ฃ^2 + 1)^2 ใ I = ๐/๐ ๐๐๐โกใ((๐^๐ โ ๐))/(๐^๐ + ๐)^๐ ใ Putting back v = ๐ฆ/๐ฅ I = 1/2 logโกใ(((๐ฆ/๐ฅ)^2 โ 1))/((๐ฆ/๐ฅ)^2 + 1)^2 ใ I = 1/2 log (((๐ฆ^2 โ ๐ฅ2)/๐ฅ^2 )/((๐ฆ^2 + ๐ฅ2)/๐ฅ^2 )^2 ) I = ๐/๐ log [(๐๐(๐^๐ โ ๐^๐))/(๐^๐ + ๐^๐ )^๐ ] Substituting value of I in (2) I = log |x| + c ๐/๐ log โ(๐๐(๐๐ โ ๐๐))/((๐๐ + ๐๐))โ = log |x| + c log โ(๐ฅ2(๐ฆ2 โ ๐ฅ2))/((๐ฅ2 + ๐ฆ2))โ = 2 log |x| + 2c log โ(๐ฅ2(๐ฆ2 โ ๐ฅ2))/((๐ฅ2 + ๐ฆ2))โ = log |x|2 + log c1 log โ(๐ฅ2(๐ฆ2 โ ๐ฅ2))/((๐ฅ2 + ๐ฆ2))โ = log |x|2 + log c1 log โ(๐ฅ2(๐ฆ2 โ ๐ฅ2))/(๐ฅ2 + ๐ฆ2)^2 โ = log c1|x|2 Cancelling log (๐๐(๐๐ โ ๐๐))/(๐๐ + ๐๐)^๐ = c1 x2 x2 (y2 โ x2) = c1 x2 (x2 + y2)2 Cancelling x2 from both sides y2 โ x2 = c1 (x2 + y2)2 x2 โ y2 = c2 (x2 + y2)2 Hence proved
Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Important You are here
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13 (MCQ)
Misc 14 (MCQ) Important
Misc 15 (MCQ)
Question 1
Question 2 Important
Question 3 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo