Check sibling questions

   


Transcript

Ex 4.4, 4 Verify A (adj A) = (adj A) A = |๐ด|I for A = [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] Calculating |๐‘จ| |A| = |โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)| = 1 |โ– 8(0&โˆ’2@0&3)| โ€“ (โ€“1) |โ– 8(3&โˆ’2@1&3)| +2 |โ– 8(3&0@1&0)| = 1 (0 โ€“ 0) + 1 (9 + 2) +2 (0 โ€“ 0) = 11 Calculating adj A adj A = [โ– 8(A_11&A_21&A_31@A_12&A_22&A_32@A_13&A_23&A_33 )] A = [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] M11 = |โ– 8(0&โˆ’2@0&3)| = 0(3) โ€“ 0(โ€“2) = 0 M12 = |โ– 8(3&โˆ’2@1&3)| = 3(3) โ€“ 1(โ€“2) = 11 M13 = |โ– 8(3&0@1&0)| = 3(0) โ€“ 0(1) = 0 M21 = |โ– 8(โˆ’1&2@0&3)| = โˆ’1(3) โ€“ 0(2) = โˆ’3 M22 = |โ– 8(1&2@1&3)| = 1(3) โ€“ 1(2) = 1 M23 = |โ– 8(1&โˆ’1@1&0)| = 1(0) โ€“ 1(โˆ’1) = 1 M31 = |โ– 8("โˆ’" 1&2@0&"โˆ’" 2)| = -1(โ€“2) โ€“ 0(2) = 2 M32 = |โ– 8(1&2@3&โˆ’2)| = 1(โ€“2) โ€“ 3(2) = โ€“8 M33 = |โ– 8(1&โˆ’1@3&0)| = 1(0) โ€“ 3(โˆ’1) = 3 Now, A11 = (โ€“1)1 + 1 M11 = (โ€“1)2 0 = 0 A12 = (โ€“1)1+2 M12 = (โ€“1)3 (11) = โ€“11 A13 = (โ€“1)1+3 M13 = (โ€“1)4 0 = 0 A21 = (โ€“1)2+1 M21 = (โ€“1)3 (โˆ’3) = 3 A22 = (โ€“1)2+2 M22 = (โ€“1)4 . 1 = 1 A23 = (โ€“1)2+3 M23 = (โ€“1)5 (1) = โˆ’1 A31 = (โ€“1)3+1 M31 = (โ€“1)4 (2) = 2 A32 = (โ€“1)3+2 M32 = (โ€“1)5 (โ€“8) = 8 A33 = (โ€“1)3+3 M33 = (โ€“1)6 (3) = 3 Thus adj (A) = [โ– 8(A11&A21&A31@A12&A22&A32@A33&A23&A33)] = [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] Calculating A (adj A) [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] = [โ– 8(1(0)โˆ’1(โคถ7โˆ’11)+2(0)&1(3)โˆ’1(1)+2(โˆ’1)&1(2)โˆ’1(8)+2(3)@3(0)+0(โคถ7โˆ’11)+(โˆ’2)(0)&3(3)+0(1)+(โˆ’2)(โˆ’1)&3(2)+0(8)+(โˆ’2)(3)@1(0)+0(โคถ7โˆ’11)+3(0)&1(3)+0(1)+3(โˆ’1)&1(2)+0(8)+3(3))] = [โ– 8(0+11+0&3โˆ’1โˆ’2&2โˆ’8+6@0โˆ’0โˆ’0&9+0+2&6+0โˆ’6@0โˆ’0+0&3+0โˆ’3&2+0+9)] = [โ– 8(11&0&0@0&11&0@0&0&11)] = 11 [โ– 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating (adj A)A [โ– 8(0&3&2@โˆ’11&1&8@0&โˆ’1&3)] [โ– 8(1&โˆ’1&2@3&0&โˆ’2@1&0&3)] = [โ– 8(0(1)+3(3)+2(1)&0(โˆ’1)+3(0)+2(0)&0(2)+3(โˆ’2)+2(3)@โˆ’11(1)+1(3)+8(1)&โˆ’11(โˆ’1)+1(0)+8(0)&โˆ’11(2)+1(โˆ’2)+8(3)@0(1)+(โˆ’1)(3)+3(1)&0(โˆ’1)+(โˆ’1)(0)+3(0)&0(2)+(โˆ’1)(โˆ’2)+3(3))] = [โ– 8(0+9+2&โˆ’0+0+0&0โˆ’6+6@โˆ’11+3+8&11+0+0&โˆ’22โˆ’2+24@0โˆ’3+3&โˆ’0โˆ’0+0&โˆ’0+2+9)]a = [โ– 8(11&0&0@0&11&0@0&0&11)] = 11 [โ– 8(1&0&0@0&1&0@0&0&1)] = 11I Calculating |A| I |A|I = 11I Thus, A (adj(A)) = (adj A) A = |A| I = 11I Hence Proved

  1. Chapter 4 Class 12 Determinants
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo