Check sibling questions

   


Transcript

Ex 3.2, 18 If A =[β– 8(0&βˆ’tan 𝛼/2 " " @tan 𝛼/2 " " &0)] and I is the identity matrix of order 2, Show that I + A = ( I – A)[β– 8(cos⁑𝛼&βˆ’sin⁑𝛼@sin⁑𝛼&cos⁑𝛼 )] Given I the identity matrix of order 2 i.e. I = [β– 8(1&0@0&1)] Solving L.H.S. I + A = [β– 8(1&0@0&1)] + [β– 8(0&βˆ’tan 𝛼/2 " " @tan 𝛼/2 " " &0)] = [β– 8(1+0&0βˆ’tan 𝛼/2 " " @0+tan 𝛼/2 " " &1+0)] = [β– 8(𝟏&βˆ’π­πšπ§ 𝜢/𝟐 " " @𝐭𝐚𝐧 𝜢/𝟐 " " &𝟏)] Solving R.H.S (I – A) [β– 8(cos⁑𝛼&βˆ’sin⁑𝛼@sin⁑𝛼&cos⁑𝛼 )] = (" " [β– 8(1&0@0&1)]βˆ’[β– 8(0&βˆ’tan 𝛼/2 " " @tan 𝛼/2 " " &0)]) [β– 8(cos⁑𝛼&βˆ’sin⁑𝛼@sin⁑𝛼&cos⁑𝛼 )] = [β– 8(1βˆ’0&0+tan 𝛼/2 " " @0βˆ’tan 𝛼/2 " " &1)][β– 8(cos⁑𝛼&βˆ’sin⁑𝛼@sin⁑𝛼&cos⁑𝛼 )] = [β– 8(1&tan Ξ±/2 " " @βˆ’ tan Ξ±/2 " " &1)][β– 8(cos⁑𝛼&βˆ’sin⁑𝛼@sin⁑𝛼&cos⁑𝛼 )] = [β– 8(1(π‘π‘œπ‘ β‘π›Ό )+π‘‘π‘Žπ‘› 𝛼/2 (𝑠𝑖𝑛⁑𝛼)&1(γ€–βˆ’π‘ π‘–π‘›γ€—β‘π›Ό )+π‘‘π‘Žπ‘› 𝛼/2 (𝑠𝑖𝑛⁑𝛼)@βˆ’π‘‘π‘Žπ‘› 𝛼/2 (π‘π‘œπ‘ β‘π›Ό )+1(𝑠𝑖𝑛⁑𝛼) &βˆ’π‘‘π‘Žπ‘› 𝛼/2 (γ€–βˆ’π‘ π‘–π‘›γ€—β‘π›Ό )+1(𝑠𝑖𝑛⁑𝛼))] = [β– 8(1((1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))"+ " π‘‘π‘Žπ‘› 𝛼/2 ((2 tan⁑〖 𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))" " &1((βˆ’2 tan⁑〖 𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 ( 𝛼)/2))"+(" π‘‘π‘Žπ‘› 𝛼/2) ((1 βˆ’ π‘‘π‘Žπ‘›2 ( 𝛼)/2)/(1 + π‘‘π‘Žπ‘›2 ( 𝛼)/2))" " @βˆ’π‘‘π‘Žπ‘› 𝛼/2 ((1 βˆ’ π‘‘π‘Žπ‘›2 ( 𝛼)/2)/(1 + π‘‘π‘Žπ‘›2 ( 𝛼)/2))" +1" ((2 tan⁑〖 𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))&βˆ’π‘‘π‘Žπ‘› 𝛼/2 ((βˆ’2 γ€–tan 〗⁑〖𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))" +1" ((1 βˆ’ π‘‘π‘Žπ‘›2 ( 𝛼)/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2)) )] We know that cos 2ΞΈ = (1 βˆ’ π‘‘π‘Žπ‘›2πœƒ)/(1 + π‘‘π‘Žπ‘›2πœƒ) & sin 2ΞΈ = (2 tanβ‘πœƒ)/(1 + π‘‘π‘Žπ‘›2πœƒ) Replacing ΞΈ with πœƒ/2 So, cos ΞΈ = (1 βˆ’ π‘‘π‘Žπ‘›2 πœƒ/2)/(1 + π‘‘π‘Žπ‘›2 πœƒ/2) & sin ΞΈ = (2 π‘‘π‘Žπ‘›β‘γ€– πœƒ/2γ€—)/(1 + π‘‘π‘Žπ‘›2 πœƒ/2) = [β– 8((1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " +" (2π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " &(βˆ’2 tan⁑〖 𝛼/2γ€— " +" tan⁑〖 𝛼/2γ€— βˆ’ π‘‘π‘Žπ‘›3 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " @(βˆ’γ€–tan 〗⁑〖𝛼/2γ€— (1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2))/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " +" (2 tan⁑〖 𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 𝛼/2)&(2π‘‘π‘Žπ‘›2 𝛼/2)/(1+π‘‘π‘Žπ‘›2 𝛼/2)+ " " (1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))] = [β– 8((1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2 + 2π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " &(βˆ’2 γ€–tan 〗⁑〖 𝛼/2γ€— " + " tan⁑〖 𝛼/2γ€— βˆ’ π‘‘π‘Žπ‘›3 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " @(βˆ’γ€–tan 〗⁑〖𝛼/2γ€— + π‘‘π‘Žπ‘›3 𝛼/2 +2 tan⁑〖 𝛼/2γ€—)/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " &" " (2π‘‘π‘Žπ‘›2 𝛼/2 + 1 βˆ’ π‘‘π‘Žπ‘›2 𝛼/2)/(1 + π‘‘π‘Žπ‘›2 𝛼/2))] = [β– 8((1 + π‘‘π‘Žπ‘›2 𝛼/2 )/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " &(βˆ’γ€–tan 〗⁑〖𝛼/2γ€— " " (1 + π‘‘π‘Žπ‘›2 𝛼/2) )/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " @(γ€–tan 〗⁑〖𝛼/2γ€— (1 + π‘‘π‘Žπ‘›2 𝛼/2))/(1 + π‘‘π‘Žπ‘›2 𝛼/2) " " &" " (1 + π‘‘π‘Žπ‘›2 𝛼/2 )/(1 + π‘‘π‘Žπ‘›2 ( 𝛼)/2))] = [β– 8(𝟏&βˆ’π­πšπ§ 𝜢/𝟐 " " @𝐭𝐚𝐧 𝜢/𝟐 " " &𝟏)] = R.H.S. Hence proved

  1. Chapter 3 Class 12 Matrices
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo