Check sibling questions

 


Transcript

Ex 3.2,10 Solve the equation for x, y, z and t, if 2[โ– 8(๐‘ฅ&๐‘ง@๐‘ฆ&๐‘ก)] + 3 [โ– 8(1&โˆ’1@0&2)] = 3 [โ– 8(3&5@4&6)] 2[โ– 8(๐‘ฅ&๐‘ง@๐‘ฆ&๐‘ก)] + 3 [โ– 8(1&โˆ’1@0&2)] = 3 [โ– 8(3&5@4&6)] [โ– 8(๐‘ฅร—2&๐‘งร—2@๐‘ฆร—2&๐‘กร—2)] + [โ– 8(1ร—3&โˆ’1ร—3@0ร—3&2ร—3)] = [โ– 8(3ร—3&5ร—3@4ร—3&6ร—3)] [โ– 8(2๐‘ฅ&2๐‘ง@2๐‘ฆ&2๐‘ก)] + [โ– 8(3&โˆ’3@0&6)] = [โ– 8(9&15@12&18)] [โ– 8(2๐‘ฅ+3&2๐‘งโˆ’3@2๐‘ฆ+0&2๐‘ก+6)] = [โ– 8(9&15@12&18)] [โ– 8(๐Ÿ๐’™+๐Ÿ‘&๐Ÿ๐’›โˆ’๐Ÿ‘@๐Ÿ๐’š&๐Ÿ๐’•+๐Ÿ”)] = [โ– 8(๐Ÿ—&๐Ÿ๐Ÿ“@๐Ÿ๐Ÿ&๐Ÿ๐Ÿ–)] Since matrices are equal. Corresponding elements are equal 2x + 3 = 9 2y = 12 2z โ€“ 3 = 15 2t + 6 = 18 Solving equation (1) 2x + 3 = 9 2x = 9 โ€“ 3 x = 6/2 x = 3 Solving equation (2) 2y = 12 y = 12/2 y = 6 Solving equation (3) 2z โ€“ 3 = 15 2z = 15 + 3 z = 18/2 z = 9 Solving equation (4) 2t + 6 = 18 2t = 18 โ€“ 6 t = 12/2 t = 6 Hence x = 3 , y = 6 , z = 9 & t = 6

  1. Chapter 3 Class 12 Matrices
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo