Check sibling questions


Transcript

Misc 2 For each of the exercise given below , verify that the given function (๐‘–๐‘š๐‘๐‘™๐‘–๐‘๐‘–๐‘ก ๐‘œ๐‘Ÿ ๐‘’๐‘ฅ๐‘๐‘™๐‘–๐‘๐‘–๐‘ก) is a solution of the corresponding differential equation . (iv) ๐‘ฅ^2=2๐‘ฆ^2 logโก๐‘ฆ : (๐‘ฅ^2+๐‘ฆ^2 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅโˆ’๐‘ฅ๐‘ฆ=0 ๐‘ฅ^2=2๐‘ฆ^2 logโก๐‘ฆ Differentiating Both sides w.r.t. x (๐‘ฅ^2 )^โ€ฒ=(2๐‘ฆ^2 logโก๐‘ฆ )โ€ฒ 2๐‘ฅ=(2๐‘ฆ^2 )^โ€ฒ logโก๐‘ฆ +2๐‘ฆ^2 (logโก๐‘ฆ )^โ€ฒ 2๐‘ฅ=2ร—2๐‘ฆ๐‘ฆ^โ€ฒ logโก๐‘ฆ + 2๐‘ฆ^2ร— 1/๐‘ฆ ๐‘ฆโ€ฒ 2๐‘ฅ=4๐‘ฆ๐‘ฆ^โ€ฒ logโก๐‘ฆ + 2๐‘ฆ๐‘ฆโ€ฒ ๐‘ฅ=2๐‘ฆ๐‘ฆ^โ€ฒ logโก๐‘ฆ + ๐‘ฆ๐‘ฆโ€ฒ ๐’™=ใ€–๐’š๐’šใ€—^โ€ฒ (๐Ÿ ๐’๐’๐’ˆโก๐’š+๐Ÿ) Now, from our equation ๐‘ฅ^2=2๐‘ฆ^2 logโก๐‘ฆ ๐‘ฅ^2/(2๐‘ฆ^2 )=logโก๐‘ฆ ๐’๐’๐’ˆโก๐’š=๐’™^๐Ÿ/(๐Ÿ๐’š^๐Ÿ ) Putting value of ๐‘™๐‘œ๐‘”โก๐‘ฆ in (1) ๐‘ฅ=ใ€–๐‘ฆ๐‘ฆใ€—^โ€ฒ (2 ๐’๐’๐’ˆโก๐’š+1) ๐‘ฅ=ใ€–๐‘ฆ๐‘ฆใ€—^โ€ฒ (2ร—๐’™^๐Ÿ/(๐Ÿ๐’š^๐Ÿ ) " " +1) ๐‘ฅ=ใ€–๐‘ฆ๐‘ฆใ€—^โ€ฒ (๐‘ฅ^2/๐‘ฆ^2 " " +1) ๐’™=ใ€–๐’š๐’šใ€—^โ€ฒ ((๐’™^๐Ÿ + ๐’š^๐Ÿ)/๐’š^๐Ÿ ) ๐‘ฅ=๐‘ฆ^โ€ฒ ((๐‘ฅ^2 + ๐‘ฆ^2)/๐‘ฆ) ๐‘ฅ๐‘ฆ=๐‘ฆ^โ€ฒ (๐‘ฅ^2 + ๐‘ฆ^2 ) ๐’š^โ€ฒ (๐’™^๐Ÿ + ๐’š^๐Ÿ )โˆ’๐’™๐’š=๐ŸŽ Thus, Given Function is a solution of the Differential Equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo