Check sibling questions


Transcript

Misc 2 For each of the exercise given below , verify that the given function (π‘–π‘šπ‘π‘™π‘–π‘π‘–π‘‘ π‘œπ‘Ÿ 𝑒π‘₯𝑝𝑙𝑖𝑐𝑖𝑑) is a solution of the corresponding differential equation . (ii) 𝑦=𝑒^π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑π‘₯ γ€— ) : (𝑑^2 𝑦)/(𝑑π‘₯^2 )βˆ’2 𝑑𝑦/𝑑π‘₯+2𝑦=0 𝑦=𝑒^π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑π‘₯ γ€— ) : Differentiating w.r.t. x 𝑦^β€²=[𝑒^π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑π‘₯ γ€— )]^β€² 𝑦^β€²=γ€–(𝑒〗^π‘₯)β€² (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑π‘₯ γ€— )+𝑒^π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 sin⁑π‘₯ γ€— )β€² 𝑦^β€²=𝒆^𝒙 (𝒂 𝒄𝒐𝒔⁑〖𝒙+𝒃 π’”π’Šπ’β‘π’™ γ€— )+𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— ) Putting 𝑦=𝑒^π‘₯ (π‘Ž π‘π‘œπ‘ β‘γ€–π‘₯+𝑏 𝑠𝑖𝑛⁑π‘₯ γ€— ) : 𝑦^β€²=π’š+𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— ) π’š^β€²βˆ’π’š=𝒆^𝒙 (βˆ’π’‚ π’”π’Šπ’β‘γ€–π’™+𝒃 𝒄𝒐𝒔⁑𝒙 γ€— ) Differentiating again w.r.t x 𝑦^β€²β€²βˆ’π‘¦^β€²=[𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— )]^β€² 𝑦^β€²β€²βˆ’π‘¦^β€²=γ€–(𝑒〗^π‘₯)β€²(βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— )+𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— )β€² 𝑦^β€²β€²βˆ’π‘¦^β€²=𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— )+𝑒^π‘₯ (βˆ’π‘Ž cos⁑〖π‘₯βˆ’π‘ si𝑛⁑π‘₯ γ€— ) 𝑦^β€²β€²βˆ’π‘¦^β€²=𝑒^π‘₯ (βˆ’π‘Ž sin⁑〖π‘₯+𝑏 cos⁑π‘₯ γ€— )βˆ’π‘’^π‘₯ (π‘Ž cos⁑〖π‘₯+𝑏 si𝑛⁑π‘₯ γ€— ) Putting 𝑦=𝑒^π‘₯ (π‘Ž π‘π‘œπ‘ β‘γ€–π‘₯+𝑏 𝑠𝑖𝑛⁑π‘₯ γ€— ) π’š^β€²β€²βˆ’π’š^β€²=𝒆^𝒙 (βˆ’π’‚ π’”π’Šπ’β‘γ€–π’™+𝒃 𝒄𝒐𝒔⁑𝒙 γ€— )βˆ’π’š Putting 𝑦^β€²βˆ’π‘¦=𝑒^π‘₯ (βˆ’π‘Ž 𝑠𝑖𝑛⁑〖π‘₯+𝑏 π‘π‘œπ‘ β‘π‘₯ γ€— ) from (1) π’š^β€²β€²βˆ’π’š^β€²=π’š^β€²βˆ’π’šβˆ’π’š 𝑦^β€²β€²βˆ’π‘¦^β€²=𝑦^β€²βˆ’2𝑦 𝑦^β€²β€²βˆ’π‘¦^β€²βˆ’π‘¦^β€²+2𝑦=0 π’š^β€²β€²βˆ’πŸπ’š^β€²+πŸπ’š=𝟎 (𝑑^2 𝑦)/(𝑑π‘₯^2 )βˆ’2 𝑑𝑦/𝑑π‘₯+2𝑦=0 Thus, Given Function is a solution of the Differential Equation

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo