Misc 2 (ii) - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Misc 2 For each of the exercise given below , verify that the given function (ππππππππ‘ ππ ππ₯ππππππ‘) is a solution of the corresponding differential equation . (ii) π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 π¦=π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ ) : Differentiating w.r.t. x π¦^β²=[π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )]^β² π¦^β²=γ(πγ^π₯)β² (π cosβ‘γπ₯+π sinβ‘π₯ γ )+π^π₯ (π cosβ‘γπ₯+π sinβ‘π₯ γ )β² π¦^β²=π^π (π πππβ‘γπ+π πππβ‘π γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) : π¦^β²=π+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ ) π^β²βπ=π^π (βπ πππβ‘γπ+π πππβ‘π γ ) Differentiating again w.r.t x π¦^β²β²βπ¦^β²=[π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )]^β² π¦^β²β²βπ¦^β²=γ(πγ^π₯)β²(βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )β² π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )+π^π₯ (βπ cosβ‘γπ₯βπ siπβ‘π₯ γ ) π¦^β²β²βπ¦^β²=π^π₯ (βπ sinβ‘γπ₯+π cosβ‘π₯ γ )βπ^π₯ (π cosβ‘γπ₯+π siπβ‘π₯ γ ) Putting π¦=π^π₯ (π πππ β‘γπ₯+π π ππβ‘π₯ γ ) π^β²β²βπ^β²=π^π (βπ πππβ‘γπ+π πππβ‘π γ )βπ Putting π¦^β²βπ¦=π^π₯ (βπ π ππβ‘γπ₯+π πππ β‘π₯ γ ) from (1) π^β²β²βπ^β²=π^β²βπβπ π¦^β²β²βπ¦^β²=π¦^β²β2π¦ π¦^β²β²βπ¦^β²βπ¦^β²+2π¦=0 π^β²β²βππ^β²+ππ=π (π^2 π¦)/(ππ₯^2 )β2 ππ¦/ππ₯+2π¦=0 Thus, Given Function is a solution of the Differential Equation
Miscellaneous
Misc 1 (ii)
Misc 1 (iii) Important
Misc 2 (i)
Misc 2 (ii) Important You are here
Misc 2 (iii)
Misc 2 (iv) Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12 Important
Misc 13 (MCQ)
Misc 14 (MCQ) Important
Misc 15 (MCQ)
Question 1
Question 2 Important
Question 3 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo