Ex 12.3
Ex 12.3, 1 (ii) Important
Ex 12.3, 1 (iii)
Ex 12.3, 1 (iv) Important
Ex 12.3, 1 (v)
Ex 12.3, 2 (i)
Ex 12.3, 2 (ii) Important
Ex 12.3, 2 (iii) Important
Ex 12.3, 2 (iv)
Ex 12.3, 2 (v) Important
Ex 12.3, 3 (i)
Ex 12.3, 3 (ii)
Ex 12.3, 3 (iii) Important
Ex 12.3, 3 (iv)
Ex 12.3, 3 (v) Important
Ex 12.3, 4 (i)
Ex 12.3, 4 (ii) Important
Ex 12.3, 4 (iii)
Ex 12.3, 4 (iv)
Ex 12.3, 4 (v) Important
Ex 12.3, 5 (i)
Ex 12.3, 5 (ii) Important
Ex 12.3, 5 (iii) You are here
Ex 12.3, 5 (iv) Important
Ex 12.3, 5 (v)
Ex 12.3, 5 (vi)
Ex 12.3, 5 (vii) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.3, 5 Factorise the expressions and divide them as directed. (iii) (5๐^2 โ 25p + 20) รท (p โ 1)We first factorise ใ๐๐ใ^๐ โ 25p + 20 Taking 5 common, = 5 (๐^2โ5๐+4) By middle term splitting, = 5 (๐^2โ๐โ๐๐+4) = 5 [(๐^2โ p) โ (4p โ 4)] = 5 [p(p โ 1) โ 4 (p โ 1)] Taking (p โ 1) common, = 5 (p โ 1)(p โ 4) Splitting the middle term We need to find two numbers whose Sum = โ5 Product = 4 So, we write โ5p = โp โ 4p Dividing (ใ5๐ใ^2โ25๐+20)รท(๐+1) = (ใ5๐ใ^2 โ 25๐ + 20)/((๐ โ1)) = (๐ (๐ โ๐) (๐โ๐))/((๐ โ๐)) = 5 ร ((๐ โ 1) )/((๐ โ 1)) ร (p โ 4) = 5 (p โ 4)