Slide16.JPG

Slide17.JPG

  1. Chapter 14 Class 8 Factorisation
  2. Serial order wise

Transcript

Ex 14.3, 2 (Method 1) Divide the given polynomial by the given monomial. (v) (๐‘^3 ๐‘ž^6 โ€“ ๐‘^6 ๐‘ž^3) รท ๐‘^3 ๐‘ž^3 ๐‘^3 ๐‘ž^6 โ€“ ๐‘^6 ๐‘ž^3 = (๐‘^3 ๐‘ž^3 ร— ๐‘ž^3) โˆ’ (๐‘^3 ๐‘ž^3 ร— ๐‘^3) Taking ๐‘^3 ๐‘ž^3common, = ๐‘^3 ๐‘ž^3(๐‘ž^3โˆ’๐‘^3) Dividing (๐‘^3 ๐‘ž^6 " " โˆ’ใ€– ๐‘ใ€—^6 ๐‘ž^3)/(๐‘^3 ๐‘ž^3 ) = (๐‘^3 ๐‘ž^3 (๐‘ž^3โˆ’๐‘^3))/(๐‘^3 ๐‘ž^3 ) = ๐’’^๐Ÿ‘โˆ’๐’‘^๐Ÿ‘ Ex 14.3, 2 (Method 2) Divide the given polynomial by the given monomial. (v) (๐‘^3 ๐‘ž^6 โ€“ ๐‘^6 ๐‘ž^3) รท ๐‘^3 ๐‘ž^3 (๐‘^3 ๐‘ž^6 " " โˆ’ใ€– ๐‘ใ€—^6 ๐‘ž^3)/(๐‘^3 ๐‘ž^3 ) = (๐‘^3 ๐‘ž^6 )/(๐‘^3 ๐‘ž^3 ) โˆ’ (๐‘^6 ๐‘ž^3)/(๐‘^3 ๐‘ž^3 ) = ๐‘ž^6/๐‘ž^3 โˆ’๐‘^6/๐‘^3 = ๐‘ž^(6 โˆ’ 3) โˆ’ ๐‘^(6 โˆ’ 3) = ๐’’^๐Ÿ‘โˆ’๐’‘^๐Ÿ‘ ("As" ๐‘Ž^๐‘š/๐‘Ž^๐‘› =๐‘Ž^(๐‘š โˆ’ n) )

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.