Ex 12.3
Ex 12.3, 1 (ii) Important
Ex 12.3, 1 (iii)
Ex 12.3, 1 (iv) Important
Ex 12.3, 1 (v)
Ex 12.3, 2 (i)
Ex 12.3, 2 (ii) Important
Ex 12.3, 2 (iii) Important
Ex 12.3, 2 (iv)
Ex 12.3, 2 (v) Important You are here
Ex 12.3, 3 (i)
Ex 12.3, 3 (ii)
Ex 12.3, 3 (iii) Important
Ex 12.3, 3 (iv)
Ex 12.3, 3 (v) Important
Ex 12.3, 4 (i)
Ex 12.3, 4 (ii) Important
Ex 12.3, 4 (iii)
Ex 12.3, 4 (iv)
Ex 12.3, 4 (v) Important
Ex 12.3, 5 (i)
Ex 12.3, 5 (ii) Important
Ex 12.3, 5 (iii)
Ex 12.3, 5 (iv) Important
Ex 12.3, 5 (v)
Ex 12.3, 5 (vi)
Ex 12.3, 5 (vii) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.3, 2 (Method 1) Divide the given polynomial by the given monomial. (v) (๐^3 ๐^6 โ ๐^6 ๐^3) รท ๐^3 ๐^3๐^3 ๐^6 โ ๐^6 ๐^3 = (๐^3 ๐^3 ร ๐^3) โ (๐^3 ๐^3 ร ๐^3) Taking ๐^3 ๐^3common, = ๐^3 ๐^3(๐^3โ๐^3) Dividing (๐^3 ๐^6 " " โใ ๐ใ^6 ๐^3)/(๐^3 ๐^3 ) = (๐^3 ๐^3 (๐^3โ๐^3))/(๐^3 ๐^3 ) = ๐^๐โ๐^๐ Ex 12.3, 2 (Method 2) Divide the given polynomial by the given monomial. (v) (๐^3 ๐^6 โ ๐^6 ๐^3) รท ๐^3 ๐^3 (๐^3 ๐^6 " " โใ ๐ใ^6 ๐^3)/(๐^3 ๐^3 ) = (๐^๐ ๐^๐ )/(๐^๐ ๐^๐ ) โ (๐^๐ ๐^๐)/(๐^๐ ๐^๐ ) = ๐^6/๐^3 โ๐^6/๐^3 = ๐^(6 โ 3) โ ๐^(6 โ 3) = ๐^๐โ๐^๐