Ex 12.3
Ex 12.3, 1 (ii) Important
Ex 12.3, 1 (iii)
Ex 12.3, 1 (iv) Important
Ex 12.3, 1 (v)
Ex 12.3, 2 (i)
Ex 12.3, 2 (ii) Important
Ex 12.3, 2 (iii) Important
Ex 12.3, 2 (iv) You are here
Ex 12.3, 2 (v) Important
Ex 12.3, 3 (i)
Ex 12.3, 3 (ii)
Ex 12.3, 3 (iii) Important
Ex 12.3, 3 (iv)
Ex 12.3, 3 (v) Important
Ex 12.3, 4 (i)
Ex 12.3, 4 (ii) Important
Ex 12.3, 4 (iii)
Ex 12.3, 4 (iv)
Ex 12.3, 4 (v) Important
Ex 12.3, 5 (i)
Ex 12.3, 5 (ii) Important
Ex 12.3, 5 (iii)
Ex 12.3, 5 (iv) Important
Ex 12.3, 5 (v)
Ex 12.3, 5 (vi)
Ex 12.3, 5 (vii) Important
Last updated at April 16, 2024 by Teachoo
Ex 12.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iv) (๐ฅ^3 + 2๐ฅ^2 + 3๐ฅ) รท 2๐ฅ๐ฅ^3 + 2๐ฅ^2 + 3๐ฅ = (๐ฅ^2 ร ๐ฅ) + (2๐ฅ ร ๐ฅ) + (3 ร ๐ฅ) Taking ๐ฅ common, = ๐ฅ (๐ฅ^2 + 2๐ฅ + 3) Dividing (๐ฅ^3 " + " 2๐ฅ^2 " + " 3๐ฅ)/2๐ฅ = (๐ฅ (๐ฅ^2 + 2๐ฅ + 3))/2๐ฅ = ๐ฅ/๐ฅ ร (๐ฅ^2+ 2๐ฅ + 3)/2 = (๐ฅ^2+ 2๐ฅ + 3)/2 = ๐/๐ (๐^๐ + 2๐ + 3) Ex 12.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iv) (๐ฅ^3 + 2๐ฅ^2 + 3๐ฅ) รท 2๐ฅ (๐ฅ^2+ 2๐ฅ + 3)/2๐ฅ = ๐ฅ^3/2๐ฅ + (2๐ฅ^2)/2๐ฅ + 3๐ฅ/2๐ฅ = (๐/๐ร๐^๐/๐) + (๐/๐ร๐^๐/๐) + (๐/๐ร๐/๐) = (1/2ร๐ฅ^2 ) + (1ร๐ฅ) + (3/2ร1) = 1/2 ๐ฅ^2+ ๐ฅ + 3/2 = (๐ฅ^2+ 2๐ฅ + 3 )/2 = ๐/๐ (๐^๐ + 2๐ + 3)