Slide13.JPG

Slide14.JPG
Slide15.JPG

  1. Chapter 14 Class 8 Factorisation
  2. Serial order wise

Transcript

Ex 14.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iv) (๐‘ฅ^3 + 2๐‘ฅ^2 + 3๐‘ฅ) รท 2๐‘ฅ ๐‘ฅ^3 + 2๐‘ฅ^2 + 3๐‘ฅ = (๐‘ฅ^2 ร— ๐‘ฅ) + (2๐‘ฅ ร— ๐‘ฅ) + (3 ร— ๐‘ฅ) Taking ๐‘ฅ common, = ๐‘ฅ (๐‘ฅ^2 + 2๐‘ฅ + 3) Dividing (๐‘ฅ^3 " + " 2๐‘ฅ^2 " + " 3๐‘ฅ)/2๐‘ฅ = (๐‘ฅ (๐‘ฅ^2 + 2๐‘ฅ + 3))/2๐‘ฅ = ๐‘ฅ/๐‘ฅ ร— (๐‘ฅ^2+ 2๐‘ฅ + 3)/2 = (๐‘ฅ^2+ 2๐‘ฅ + 3)/2 = ๐Ÿ/๐Ÿ (๐’™^๐Ÿ + 2๐’™ + 3) Ex 14.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iv) (๐‘ฅ^3 + 2๐‘ฅ^2 + 3๐‘ฅ) รท 2๐‘ฅ (๐‘ฅ^2+ 2๐‘ฅ + 3)/2๐‘ฅ = ๐‘ฅ^3/2๐‘ฅ + (2๐‘ฅ^2)/2๐‘ฅ + 3๐‘ฅ/2๐‘ฅ = (1/2ร—๐‘ฅ^3/๐‘ฅ) + (2/2ร—๐‘ฅ^2/๐‘ฅ) + (3/2ร—๐‘ฅ/๐‘ฅ) = (1/2ร—๐‘ฅ^2 ) + (1ร—๐‘ฅ) + (3/2ร—1) = 1/2 ๐‘ฅ^2+ ๐‘ฅ + 3/2 = (๐‘ฅ^2+ 2๐‘ฅ + 3 )/2 = ๐Ÿ/๐Ÿ (๐’™^๐Ÿ + 2๐’™ + 3)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.