Slide10.JPG

Slide11.JPG
Slide12.JPG

  1. Chapter 14 Class 8 Factorisation
  2. Serial order wise

Transcript

Ex 14.3, 2 (Method 1) Divide the given polynomial by the given monomial. (iii) 8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) รท 4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) = 8 (๐‘ฅร—๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (๐‘ฆ ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (z ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) Taking ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 common = 8๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 (๐‘ฅ + y +z) Dividing (8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = (8ใ€– ๐‘ฅใ€—^2 ๐‘ฆ^2 ๐‘ง^2 (๐‘ฅ + ๐‘ฆ + ๐‘ง))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = 8/4 ร— (๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2)/(๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) ร— (๐‘ฅ + y + z) = 2 ร— (๐‘ฅ + y + z) = 2 (๐’™ + y + z) Ex 14.3, 2 (Method 2) Divide the given polynomial by the given monomial. (iii) 8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 +๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3) รท 4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 8 (๐‘ฅร—๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (๐‘ฆ ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) + (z ร— ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2) = (8 (๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2 + ๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3))/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = (8๐‘ฅ^3 ๐‘ฆ^2 ๐‘ง^2)/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) + (8๐‘ฅ^2 ๐‘ฆ^3 ๐‘ง^2)/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) + (8๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^3)/(4๐‘ฅ^2 ๐‘ฆ^2 ๐‘ง^2 ) = 2๐‘ฅ + 2y + 2z Taking (x + y + z) common = 2 (๐’™ + y + z)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.