Chapter 7 Class 12 Integrals
Concept wise

ย  Ex 7.8, 8 - Find Integral pi/6 -> pi/4 cosec x - Teachoo - Ex 7.8

part 2 - Ex 7.8, 8 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Ex 7.8, 8 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Ex 7.8, 8 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Ex 7.8, 8 โˆซ_(๐œ‹/6)^(๐œ‹/4)โ–’ใ€–๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅใ€—โก๐‘‘๐‘ฅ Let F(๐‘ฅ)=โˆซ1โ–’ใ€–๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ . ๐‘‘๐‘ฅใ€— Multiplying and Dividing by ๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+๐‘๐‘œ๐‘ก ๐‘ฅ F(๐‘ฅ)=โˆซ1โ–’(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ (๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ))/(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ) ๐‘‘๐‘ฅ Let c๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+๐‘๐‘œ๐‘ก ๐‘ฅ=๐‘ก Differentiating w.r.t. ๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ (๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+๐‘๐‘œ๐‘ก ๐‘ฅ)=๐‘‘๐‘ก/๐‘‘๐‘ฅ โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘^2 ๐‘ฅโˆ’๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ ๐‘๐‘œ๐‘ก ๐‘ฅ=๐‘‘๐‘ก/๐‘‘๐‘ฅ โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+๐‘๐‘œ๐‘ก ๐‘ฅ)=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ (๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ) ) Therefore, โˆซ1โ–’(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ))/(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ) ๐‘‘๐‘ฅ =โˆซ1โ–’(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ))/๐‘ก. ๐‘‘๐‘ก/(โˆ’๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ(๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ + ๐‘๐‘œ๐‘ก ๐‘ฅ) ) =โˆ’โˆซ1โ–’๐‘‘๐‘ก/๐‘ก =โˆ’logโกใ€– |๐‘ก|ใ€— =โˆ’logโกใ€– |๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+๐‘๐‘œ๐‘ก ๐‘ฅ|ใ€— Hence, F(๐‘ฅ)=โˆ’logโก|๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ+cotโก๐‘ฅ | Now, โˆซ_(๐œ‹/6)^(๐œ‹/4)โ–’ใ€–๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ=๐น(๐œ‹/4)โˆ’๐น(๐œ‹/6) ใ€— =โˆ’๐‘™๐‘œ๐‘”|๐‘๐‘œ๐‘ ๐‘’๐‘(๐œ‹/4)+๐‘๐‘œ๐‘ก(๐œ‹/4)|โˆ’ (โˆ’logโก|๐‘๐‘œ๐‘ ๐‘’๐‘(๐œ‹/6)+ ๐‘๐‘œ๐‘ก(๐œ‹/6)| ) =โˆ’๐‘™๐‘œ๐‘”|โˆš2+1|+๐‘™๐‘œ๐‘”|2+โˆš3| =โˆ’๐‘™๐‘œ๐‘”|2+โˆš3|โˆ’ ๐‘™๐‘œ๐‘”|โˆš2+1| =๐‘™๐‘œ๐‘”|(2 + โˆš3)/(โˆš2 + 1)| =๐‘™๐‘œ๐‘”|(2 + โˆš3)/(โˆš2 + 1)ร—(2 โˆ’ โˆš3)/(2 โˆ’ โˆš3)| =๐‘™๐‘œ๐‘”[((2)^2 โˆ’ (โˆš3)^2)/((โˆš2 + 1) ร— (2 โˆ’ โˆš3) )] =๐‘™๐‘œ๐‘”[(4 โˆ’ 3)/(โˆš2 + 1)(2 โˆ’ โˆš3) ] =๐‘™๐‘œ๐‘”[(1 ร— (โˆš2 โˆ’ 1))/((2 โˆ’ โˆš3)(โˆš2 + 1) ร—(โˆš2 โˆ’ 1) )] =๐‘™๐‘œ๐‘”[(โˆš2 โˆ’ 1)/(2 โˆ’ โˆš3)[(โˆš2)^2โˆ’ 1^2 ] ] =๐’๐’๐’ˆ[(โˆš๐Ÿ โˆ’ ๐Ÿ)/(๐Ÿ โˆ’ โˆš๐Ÿ‘)]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo