

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15 You are here
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 6.2, 15 Let I be any interval disjoint from [–1, 1]. Prove that the function f given by 𝑓(𝑥) = 𝑥 + 1/𝑥 is strictly increasing on I.I is any interval disjoint from [–1, 1] Let I = (−∞, −𝟏)∪(𝟏, ∞) Given f(𝑥) = 𝑥 + 1/𝑥 We need to show f(𝑥) is strictly increasing on I i.e. we need to show f’(𝒙) > 0 for 𝑥 ∈ (−∞, −𝟏)∪(𝟏, ∞) Finding f’(𝒙) f(𝑥) = 𝑥 + 1/𝑥 f’(𝑥) = 1 – 1/𝑥2 f’(𝑥) = (𝑥2 − 1)/𝑥2 Putting f’(𝒙) = 0 (𝑥2 − 1)/𝑥2 = 0 𝑥2−1 = 0 (𝑥−1)(𝑥+1)=0 So, 𝒙=𝟏 & 𝒙=−𝟏 Plotting points on number line The point 𝑥 = –1 , 1 into three disjoint intervals ∴ f(x) is strictly increasing on (−∞ , −𝟏) & (𝟏 , ∞) Hence proved