Ex 6.2,15 - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15 You are here
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 6.2, 15 Let I be any interval disjoint from [â1, 1]. Prove that the function f given by đ(đĽ) = đĽ + 1/đĽ is strictly increasing on I.I is any interval disjoint from [â1, 1] Let I = (ââ, âđ)âŞ(đ, â) Given f(đĽ) = đĽ + 1/đĽ We need to show f(đĽ) is strictly increasing on I i.e. we need to show fâ(đ) > 0 for đĽ â (ââ, âđ)âŞ(đ, â) Finding fâ(đ) f(đĽ) = đĽ + 1/đĽ fâ(đĽ) = 1 â 1/đĽ2 fâ(đĽ) = (đĽ2 â 1)/đĽ2 Putting fâ(đ) = 0 (đĽ2 â 1)/đĽ2 = 0 đĽ2â1 = 0 (đĽâ1)(đĽ+1)=0 So, đ=đ & đ=âđ Plotting points on number line The point đĽ = â1 , 1 into three disjoint intervals â´ f(x) is strictly increasing on (ââ , âđ) & (đ , â) Hence proved