Ex 6.2,15 - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15 You are here
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 6.2, 15 Let I be any interval disjoint from [â1, 1]. Prove that the function f given by đ(đĽ) = đĽ + 1/đĽ is strictly increasing on I.I is any interval disjoint from [â1, 1] Let I = (ââ, âđ)âŞ(đ, â) Given f(đĽ) = đĽ + 1/đĽ We need to show f(đĽ) is strictly increasing on I i.e. we need to show fâ(đ) > 0 for đĽ â (ââ, âđ)âŞ(đ, â) Finding fâ(đ) f(đĽ) = đĽ + 1/đĽ fâ(đĽ) = 1 â 1/đĽ2 fâ(đĽ) = (đĽ2 â 1)/đĽ2 Putting fâ(đ) = 0 (đĽ2 â 1)/đĽ2 = 0 đĽ2â1 = 0 (đĽâ1)(đĽ+1)=0 So, đ=đ & đ=âđ Plotting points on number line The point đĽ = â1 , 1 into three disjoint intervals â´ f(x) is strictly increasing on (ââ , âđ) & (đ , â) Hence proved