Learn Intergation from Davneet Sir - Live lectures starting soon!

Ex 6.2

Ex 6.2, 1

Ex 6.2,2

Ex 6.2,3 Important

Ex 6.2,4

Ex 6.2, 5 Important

Ex 6.2, 6 (a)

Ex 6.2, 6 (b) Important

Ex 6.2, 6 (c) Important

Ex 6.2, 6 (d)

Ex 6.2, 6 (e) Important

Ex 6.2, 7

Ex 6.2,8 Important You are here

Ex 6.2,9 Important

Ex 6.2,10

Ex 6.2,11

Ex 6.2, 12 (A)

Ex 6.2, 12 (B) Important

Ex 6.2, 12 (C) Important

Ex 6.2, 12 (D)

Ex 6.2, 13 (MCQ) Important

Ex 6.2,14 Important

Ex 6.2,15

Ex 6.2, 16

Ex 6.2,17 Important

Ex 6.2,18

Ex 6.2,19 (MCQ) Important

Last updated at April 14, 2021 by Teachoo

Ex 6.2, 8 Find the values of 𝑥 for which y = [𝑥(𝑥 – 2)]2 is an increasing function 𝑦 = [𝑥(𝑥−2)]^2 Finding 𝒅𝒚/𝒅𝒙 𝑦 = [𝑥(𝑥−2)]^2 𝑦 = [𝑥^2−2𝑥]^2 𝑦 = (𝑥)^4+(2𝑥)^2−2(𝑥^2 )(2𝑥) 𝒚 = 𝒙^𝟒+𝟒𝒙^𝟐−𝟒𝒙^𝟑 Differentiating w.r.t 𝑥 𝑑𝑦/𝑑𝑥=𝑑(𝑥^4 + 4𝑥^2 − 4𝑥^3 )/𝑑𝑥 𝑑𝑦/𝑑𝑥=4𝑥^3+8𝑥−12𝑥^2 𝑑𝑦/𝑑𝑥=4𝑥(𝑥^2+2−3𝑥) 𝑑𝑦/𝑑𝑥=4𝑥(𝑥^2−3𝑥+2) 𝑑𝑦/𝑑𝑥=4𝑥(𝑥^2−2𝑥−𝑥+2) 𝑑𝑦/𝑑𝑥=4𝑥(𝑥(𝑥−2)−1(𝑥−2)) 𝑑𝑦/𝑑𝑥=4𝑥((𝑥−1)(𝑥−2)) 𝑑𝑦/𝑑𝑥=4𝑥(𝑥−1)(𝑥−2) Putting 𝒅𝒚/𝒅𝒙=𝟎 4𝑥(𝑥−1)(𝑥−2)=0 So, 𝑥=0 , 𝑥=1 & 𝑥=2 Plotting points on real line Thus, the function is strictly increasing for 0 <𝒙<𝟏 and 𝒙>𝟐