
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10 You are here
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at April 14, 2021 by Teachoo
Ex 6.2, 10 Prove that the logarithmic function is strictly increasing on (0, â).f(đĽ) = log (đĽ) We need to prove f(đĽ) in increasing on đĽ â (0 , â) i.e. we need to show fâ(đ) > 0 for x â (đ , â) Now, f(đĽ) = log đĽ fâ(đĽ) = 1/đĽ When đ > 0 (1 )/đĽ > 0 fâ(đĽ) > 0 â´ f(đĽ) is an increasing function for đĽ > 0 Hence, f(đĽ) is an increasing function for (0, â). Hence proved