

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11 You are here
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 6.2, 11 Prove that the function f given by f (đĽ) = đĽ^2 â đĽ + 1 is neither strictly increasing nor strictly decreasing on (â 1, 1).Given f(đĽ) = đĽ2 â đĽ + 1 Finding fâ(đ) fâ(đĽ) = 2đĽ â 1 Putting fâ(đ) = 0 2đĽ â 1 = 0 2đĽ = 1 đĽ = 1/2 Since đ â (âđ , đ) So, our number line looks like Hence, f(x) is strictly decreasing for đĽ â (â1 , 1/2) & f(x) is strictly increasing for đĽ â (1/2, 1) Hence, f(đĽ) is neither decreasing nor increasing on (âđ , đ). Hence Proved