Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.2
Ex 6.2,2 You are here
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 6.2, 2 Show that the function given by f (x) = e2x is strictly increasing on R. Let 𝑥1 and 𝑥2 be real numbers Such that 𝒙𝟏 < 𝒙2 Multiplying both sides by 2 2𝑥1 < 2𝑥2 Taking exponential both sides 𝑒^2𝑥1 < 𝑒^2𝑥2 f (𝒙𝟏) < f ( 𝒙2) Hence, when x1 < x2 , f(x1) < f(x2) Thus, f(x) is strictly increasing on R.