Ex 6.2,9 - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7
Ex 6.2,8 Important
Ex 6.2,9 Important You are here
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 6.2, 9 Prove that π¦ = (4 sinβ‘π)/((2 +γ cosγβ‘γπ)γ ) β ΞΈ is an increasing function of ΞΈ in[0,π/2] . π¦ = (4 sinβ‘π)/((2 + cosβ‘π ) )βπ We need to prove that function is increasing function of ΞΈ in (0 , π/2) i.e. we need to prove that π π/(π π½ ) > 0 for ΞΈ β [π , π /π] Differentiating w.r.t ΞΈ ππ¦/(ππ ) = π/ππ ((4 sinβ‘π)/(2 + cosβ‘π ) βπ) ππ¦/(ππ ) = π/ππ ((4 sinβ‘π)/(2 +cosβ‘π ) )β ππ/ππ ππ¦/(ππ ) = π/ππ ((4 sinβ‘π)/(2 +cosβ‘π ) )β 1 ππ¦/ππ₯ = ((π πππβ‘π½ )^β² (π + πππβ‘π½ ) β (π + πππβ‘π½ )^β² (π πππβ‘π½ ))/(π + πππβ‘π½ )π β1 ππ¦/ππ₯ = (4 cosβ‘π (2 + cosβ‘π ) β (0 β sinβ‘π )(4 sinβ‘π ))/(2 + cosβ‘π )2 β1 ππ¦/ππ₯ = (8 cosβ‘γπ + 4 (πππππ½ + πππππ½)γ)/(2 + cosβ‘π )2 β1 ππ¦/ππ₯ = (8 cosβ‘γπ + 4(π)γ)/(2 + cosβ‘π )2 β1 ππ¦/ππ₯ = (8 cosβ‘γπ + 4γ β (2 + cosβ‘π )2)/(2 + cosβ‘π )2 Using quotient rule as (π’/π£)^β²= (π’^β² π£ β π£^β² π’)/π£2 Where u = 4 sinβ‘π & π£= 2+cosβ‘π ππ¦/ππ₯ = (8 cosβ‘γπ + 4γ β (4 + πππ 2 π + 4 πππ π))/(2 + cosβ‘π )2 ππ¦/ππ₯ = (8 cosβ‘γπ + 4γ β 4 β πππ 2π β 4 πππ π)/(2 + cosβ‘π )2 ππ¦/ππ₯ = (8 cosβ‘γπ β 4 cosβ‘π + 4 β 4 β πππ 2πγ)/(2 + cosβ‘π )2 ππ¦/ππ₯ = (4 cos π + 0 β πππ 2π)/(2 + cosβ‘π )2 ππ¦/ππ₯ = (4 cosβ‘γπ β πππ 2 πγ)/(2 + cosβ‘π )2 π π/π π = (πππβ‘π½ (π β πππβ‘π½ ))/(π + πππβ‘π½ )π For the function to be increasing ππ¦/ππ > 0 (ππ¨π¬β‘π½ (π β πππβ‘π½ ))/(π + πππβ‘π½ )π > 0 Since denominator is a square, We need to show that cos ΞΈ (πβππ¨π¬β‘π½ ) > 0 for ΞΈ β [0 , π/2] Now, 0 β€ cos ΞΈ β€ 1 Multiplying by β1 β1 β€ βcos ΞΈ β€ 0 Adding 4 both sides β1 + 4 β€ β cos ΞΈ + 4 < 0 + 4 3 β€ 4 β cos ΞΈ < 4 Thus, (4 β cos ΞΈ) is positive And, cos ΞΈ is also positive Hence, cos ΞΈ (4 β cos2 ΞΈ) is also positive β΄ cos ΞΈ (4 β cos2 ΞΈ) > 0 for ΞΈ β [0 , π/2 ] Hence π¦ = (4 sinβ‘π)/(2 +cosβ‘π ) β ΞΈ is an increasing function for ΞΈ β [π , π /π]