Ex 6.2, 7 - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.2
Ex 6.2,2
Ex 6.2,3 Important
Ex 6.2,4
Ex 6.2, 5 Important
Ex 6.2, 6 (a)
Ex 6.2, 6 (b) Important
Ex 6.2, 6 (c) Important
Ex 6.2, 6 (d)
Ex 6.2, 6 (e) Important
Ex 6.2, 7 You are here
Ex 6.2,8 Important
Ex 6.2,9 Important
Ex 6.2,10
Ex 6.2,11
Ex 6.2, 12 (A)
Ex 6.2, 12 (B) Important
Ex 6.2, 12 (C) Important
Ex 6.2, 12 (D)
Ex 6.2, 13 (MCQ) Important
Ex 6.2,14 Important
Ex 6.2,15
Ex 6.2, 16
Ex 6.2,17 Important
Ex 6.2,18
Ex 6.2,19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 6.2, 7 Show that ๐ฆ = log(1 + ๐ฅ) โ 2๐ฅ/(2 + ๐ฅ) , ๐ฅ > โ 1 , is an increasing function of ๐ฅ throughout its domain.Given ๐ฆ = log (1+๐ฅ) โ 2๐ฅ/(2 + ๐ฅ) , ๐ฅ > โ1 We need to show that y is strictly increasing function for ๐ฅ > โ1 i.e. we need to show that (๐ ๐ )/๐ ๐ > 0 for ๐ > โ1 Finding ๐ ๐/๐ ๐ ๐ฆ = log (1+๐ฅ) โ (2๐ฅ )/(2 + ๐ฅ) (๐๐ฆ )/๐๐ฅ = ๐(logโกใ(1 + ๐ฅ) โ 2๐ฅ/(2 + ๐ฅ)ใ )/๐๐ฅ (๐๐ฆ )/๐๐ฅ = ๐(๐๐๐(1 + ๐ฅ))/๐๐ฅ โ ๐/๐๐ฅ (๐๐/(๐+๐)) (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) . (1+๐ฅ)โ โ [((๐๐)^โฒ (๐ + ๐) โใ (๐ + ๐)ใ^โฒ ๐๐)/(๐ + ๐)๐] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) . (0+1) โ [(2(2 + ๐ฅ) โ (0 + 1)2๐ฅ)/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) โ[(4 + 2๐ฅ โ 2๐ฅ)/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = 1/(1 + ๐ฅ) โ [4/(2 + ๐ฅ)2] (๐๐ฆ )/๐๐ฅ = ((2 + ๐ฅ)2 โ 4(1 + ๐ฅ))/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = ((2)2 + (๐ฅ)2 + 2(2)(๐ฅ) โ 4 โ 4๐ฅ)/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = (4 + ๐ฅ2 + 4๐ฅ โ 4 โ 4๐ฅ)/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = ๐ฅ2/(1 + ๐ฅ)(2 + ๐ฅ)2 (๐๐ฆ )/๐๐ฅ = (๐ฅ/(2 + ๐ฅ))^2 1/(1 + ๐ฅ) Now, (๐๐ฆ )/๐๐ฅ = (๐/(๐ + ๐))^๐ 1/(1 + ๐ฅ) Now, finding value where ๐๐ฆ/๐๐ฅ > 0 ๐๐ฆ/๐๐ฅ > 0 (๐ฅ/(2 + ๐ฅ))^2.(1/(1 + ๐ฅ)) > 0 (๐/(๐ + ๐ ))>๐ This is possible only when 1 + ๐ฅ > 0 i.e. ๐ > โ1 So, ๐ ๐/๐ ๐ > 0 for ๐ > โ1 Hence proved