


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams You are here
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 15 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Example 23 Important
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at May 29, 2023 by Teachoo
Question 5 Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the values x, has the following form, where k is some unknown constant. P(X = x) = {β(0.1 , ππ π₯=0@ππ₯, ππ π₯=1 ππ 2@π(5βπ₯), ππ π₯=3 ππ [email protected], ππ‘βπππ€ππ π)β€ (a) Find the value of kMaking in tabular foArmat Since X is a random variable , its Sum of Probabilities is equal to 1 β_0^4βγπ(π)γ = 1 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 1 0.1 + k + 2k + 2k + k = 1 6k = 1 β 0.1 6k = 0.9 k = (0. 9)/6 k = 0.15 Question 5 (b) What is the probability that you study atleast two hours? Exactly two hours? At most 2 HoursOur probability distribution table is P(you study atleast two hours) = P(X β₯ 2) = P(X = 2) + P(X = 3) + P(X = 4) = 2k + 2k + k = 5k = 5 Γ 0.15 = 0.75 P(you study exactly two hours) = P(X = 2) = 2k = 2 Γ 0.15 = 0.30 P(you study atmost two hours) = P(X β€ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.1 + k + 2k = 0.1 + 3k = 0.1 + 3 Γ 0.15 = 0.1 + 0.45 = 0.55