

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important You are here
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 15 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Example 23 Important
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at May 29, 2023 by Teachoo
Ex 13.1, 12 Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girlA family has 2 children Let girls be denoted by ‘g’ & boys be denoted by ‘b’ S = {(g, g), (g, b), (b, g), (b, b)} We need to find the Probability that both the children are girls, given that the youngest is a girl. Let F : youngest child in a girl E : both the children are girls We need to find P(E|F) Also, E ∩ F = {(g, g)} So, P(E ∩ F ) = 1/4 Now, P(E|F) = (𝑃(𝐸 ∩ 𝐹))/(𝑃(𝐹)) = (1/4)/(1/2) E = {(g, g)} P(E) = 1/4 F = {(g, g), (b, g)} P(F) = 2/4=1/2 = 1/4 × 2/1 = 𝟏/𝟐 Ex 13.1, 12 Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (ii) at least one is a girl? S = {(g, g), (g, b), (b, g), (b, b)} We need to find the probability that the children are girls, given that at least one is a girl. F : at least one child is a girl E : both the children are girls E = {(g, g)} P(E) = 1/4 F = {(g, g), (g, b), (b, g)} P(F) = 3/4 Also, E ∩ F = {(g, g)} So, P(E ∩ F ) = 1/4 Now, P(E|F) = (𝑃(𝐸 ∩ 𝐹))/(𝑃(𝐹)) = (1/4)/(3/4) = 1/4 × 4/3 = 𝟏/𝟑