Ex 13.3, 13 (MCQ) - Chapter 13 Class 12 Probability (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important You are here
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 15 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Example 23 Important
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Ex 13.3, 13 Probability that A speaks truth is 4/5 . A coin is tossed. A reports that a head appears. The probability that actually there was head is (A) 4/5 (B) 1/2 (C) 1/5 (D) π/πLet E : A speaks truth F : A Lies H : head appears on the toss of a coin We need to find the Probability that head actually appears, if A reports that a head appears i.e. P(E|H) P(E|H) = "P(E) . P(H|E) " /"P(F) . P(H|F) + P(E) . P(H|E)" P(E) = Probability that A speaks truth = π/π P(H|E) = Probability that head appears, if A speaks truth = π/π P(F) = Probability that A lies = 1 β P(E) = 1 β 4/5 = π/π P(H|F) = Probability that head appears, if A lies = π/π Putting values in formula, P(E|H) = (4/5 Γ 1/2)/(1/5 Γ 1/2 + 4/5 Γ 1/2) = (1/5 Γ 1/2 Γ 4)/(1/5 Γ 1/2 [1 + 4]) = 4/5 Therefore, required probability is 4/5 β΄ A is the correct answer