Question 6 - Chapter 13 Class 12 Probability (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams You are here
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams You are here
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 15 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 4 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams You are here
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Example 23 Important
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams You are here
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at April 16, 2024 by Teachoo
Question 6 From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.Let X : be the number of defective bulbs Picking bulbs is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 n = number of times we pick a bulb = 4 p = Probability of getting defective bulb = 6/30 = 1/5 q = 1 – p = 1 – 1/5 = 4/5 Hence, P(X = x) = 4Cx (𝟏/𝟓)^𝒙 (𝟒/𝟓)^(𝟒−𝒙) Now, P(X = 0) = 4C0 (1/5)^0 (4/5)^(4−0)= 4C0 (1/5)^0 (4/5)^4 = 256/625 P(X = 1) = 4C1 (1/5)^1 (4/5)^(4−1)= 4C1 (1/5)^1 (4/5)^3 = 4 × 64/625 = 256/625 P(X = 2) = 4C2 (1/5)^2 (4/5)^(4−2)= 4C2 (1/5)^2 (4/5)^2 = 6 × 16/625 = 96/625 P(X = 3) = 4C3 (1/5)^3 (4/5)^(4−3)= 4C3 (1/5)^3 (4/5)^1 = 4 × 4/625 = 16/625 P(X = 4) = 4C4 (1/5)^4 (4/5)^(4−4)= 4C4 (1/5)^4 (4/5)^0= 1/625 So, the probability distribution is