



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 13 Class 12 Probability
Example 6
Ex 13.1, 10 (a) Important
Ex 13.1, 12 Important
Example 11 Important
Ex 13.2, 7 Important
Ex 13.2, 11 (i)
Ex 13.2, 14 Important
Example 17 Important
Example 18 Important
Example 20 Important
Example 21 Important
Ex 13.3, 2 Important
Ex 13.3, 4 Important
Ex 13.3, 8 Important
Ex 13.3, 10 Important
Ex 13.3, 12 Important
Ex 13.3, 13 (MCQ) Important
Question 4 Important Deleted for CBSE Board 2024 Exams You are here
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Important Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 15 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 4 Important Deleted for CBSE Board 2024 Exams You are here
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Example 23 Important
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams You are here
Question 6 Important Deleted for CBSE Board 2024 Exams
Misc 7 Important
Misc 10 Important
Chapter 13 Class 12 Probability
Last updated at May 29, 2023 by Teachoo
Question 4 Find the probability distribution of number of doublets in three throws of a pair of dice. If 2 dies are thrown, there are 6 × 6 = 36 outcomes Doublet: It means same number is obtained on both throws of die Number of doublets possible on 2 throws of die are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) P(getting a doublet) = 6/36 = 1/6 P(not getting a doublet) = 1 – 1/6 = 5/6 We need to find probability distribution of number of doublets in three throws of a pair of dice. Since Two dies are thrown thrice. We can get, 0 doublet or 1 doublet or 2 doublets or 3 doublets So, value of X can be 0, 1, 2, 3 P(X = 0) P(X = 0) = P(0 doublet on three throws) = P(0 doublet) × P(0 doublet) × P(0 doublet) = 5/6 × 5/6 × 5/6 = 125/216 P(X = 1) P(X = 1) = P(one doublet on three throws) = P(one doublet) × P(0 doublet) × P(0 doublet) + P(0 doublet) × P(one doublet) × P(0 doublet) + P(0 doublet) × P(0 doublet) × P(one doublet) = 1/6 × 5/6 × 5/6 + 5/6 × 1/6 × 5/6 + 5/6 × 5/6 × 1/6 = 3 × 5/6 × 5/6 × 1/6 = 75/216 P(X = 2) P(X = 2) = P(two doublet on three throws) = P(one doublet) × P(one doublet) × P(0 doublet) + P(one doublet) × P(0 doublet) × P(one doublet) + P(0 doublet) × P(one doublet) × P(one doublet) = 1/6 × 1/6 × 5/6 + 1/6 × 5/6 × 1/6 + 5/6 × 1/6 × 1/6 = 3 × 1/6 × 1/6 × 5/6 = 15/216 P(X = 3) P(X = 3) = P(three doublets on three throws) = P(one doublet) × P(one doublet) × P(one doublet) = 1/6 × 1/6 × 1/6 = 1/216 So, probability distribution is