Check sibling questions

Ex 6.3, 5 - Find slope of normal to the curve x = a cos^3 , y=sin^3

Ex 6.3, 5 - Chapter 6 Class 12 Application of Derivatives - Part 2
Ex 6.3, 5 - Chapter 6 Class 12 Application of Derivatives - Part 3

Solve all your doubts with Teachoo Black (new monthly pack available now!)


Ex 6.3, 5 Find the slope of the normal to the curve π‘₯=π‘Ž cos^3β‘πœƒ, 𝑦=π‘Ž sin3 πœƒ at πœƒ=πœ‹/4Given π‘₯=π‘Ž cos^3β‘πœƒ Differentiating w.r.t. ΞΈ 𝑑π‘₯/π‘‘πœƒ=𝑑(γ€–a cosγ€—^3β‘πœƒ )/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ=π‘Ž .𝑑(cos^3β‘πœƒ )/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ=π‘Ž . 3 cos^2β‘πœƒ. (βˆ’sinβ‘πœƒ ) 𝑑π‘₯/π‘‘πœƒ=βˆ’ 3π‘Ž sinβ‘γ€–πœƒ cos^2β‘πœƒ γ€— Similarly 𝑦=π‘Ž sin3 πœƒ Differentiating w.r.t. ΞΈ 𝑑𝑦/π‘‘πœƒ=𝑑(π‘Ž sin3 πœƒ" " )/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ=π‘Ž .𝑑(sin3 πœƒ)/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ=π‘Ž . 3 sin^2β‘πœƒ. (cosβ‘πœƒ ) 𝑑𝑦/π‘‘πœƒ= 3π‘Ž sin^2β‘γ€–πœƒ .π‘π‘œπ‘ β‘πœƒ γ€— We know that Slope of tangent = 𝑑𝑦/𝑑π‘₯ =𝑑𝑦/π‘‘πœƒΓ·π‘‘π‘₯/π‘‘πœƒ =(3π‘Ž sin^2β‘γ€–πœƒ cosβ‘πœƒ γ€—)/(βˆ’ 3π‘Ž sinβ‘γ€–πœƒ cos^2β‘πœƒ γ€— ) =(βˆ’sinβ‘πœƒ)/cosβ‘πœƒ =βˆ’tanβ‘πœƒ Putting πœƒ=πœ‹/4 β”œ 𝑑𝑦/𝑑π‘₯─|_(πœƒ = πœ‹/4)=βˆ’π‘‘π‘Žπ‘›(πœ‹/4) =βˆ’1 Now we know that Tangent is perpendicular to Normal Hence, Slope of tangent Γ— Slope of Normal = βˆ’1 βˆ’1 Γ— Slope of Normal = βˆ’1 Slope of Normal =(βˆ’1)/(βˆ’1) Slope of Normal = 1 Hence, Slope of Normal is 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.