Chapter 6 Class 12 Application of Derivatives
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 26 (MCQ) Important Deleted for CBSE Board 2025 Exams
Example 23 Important
Example 25 Important
Example 26 Important
Example 28 Important
Ex 6.3, 1 (i) Important
Ex 6.3, 5 (i)
Ex 6.3,7 Important
Ex 6.3,11 Important
Ex 6.3,18 Important
Ex 6.3, 20 Important
Ex 6.3,23 Important
Ex 6.3, 26 Important
Ex 6.3,28 (MCQ) Important
Question 14 Important Deleted for CBSE Board 2025 Exams
Example 33 Important
Misc 3 Important
Misc 8 Important
Misc 10 Important
Misc 14 Important You are here
Question 6 (MCQ) Deleted for CBSE Board 2025 Exams
Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Misc 14 Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is 2π /β3 . Also find the maximum volume.Given Radius of sphere = R Let h be the height & π be the diameter of cylinder In β π¨π©πͺ Using Pythagoras theorem (πΆπ΅)^2+(π΄π΅)^2=(π΄πΆ)^2 h2 + π₯^2=(π +π )^2 h2 + π₯2 =(2π )^2 h2 + π₯2 = 4R2 π2 = 4R2 β h2 We need to find maximum volume of cylinder Let V be the volume of cylinder V = Ο (πππππ’π )^2Γ(βπππβπ‘) V = Ο (π₯/2)^2Γ β V = Ο Γ π₯^2/4Γ β V = Ο ((4π ^2 β β^2 ))/4 Γ β V = (4π ^2 πβ)/4β(πβ^3)/4 V = ΟhR2 β (π π^π)/π Differentiating w.r.t π ππ/πβ=π(πβπ ^2 β πβ^3/4)/πβ ππ/πβ= ΟR2 π(β)/πββπ/4 π(β^3 )/πβ ππ΅/πβ= ΟR2 β π/4 (3β^2 ) ππ/πβ= ΟR2 β 3π/4 h2 Putting π π½/π π=π Ο R2 β 3/4 π β^2=0 3/4 πβ^2=ππ ^2 h2 = (ππ ^2)/(3/4 π) h2 = (4π ^2)/3 h =β((4π ^2)/3) h = ππΉ/βπ Finding (π ^π π½)/(π π^π ) ππ/πβ=ππ ^2β3/(4 ) π β^2 Differentiating w.r.t. h (π^2 π)/(πβ^2 )= π(ππ ^2 β 3/4 πβ^2 )/πβ (π^2 π)/(πβ^2 )= 0 β 3π/4 Γ2β (π ^π π½)/(π π^π )=(βππ π)/π Since (π ^π π½)/(π π^π )<π for h = 2π /β3 β΄ Volume is maximum for h = 2π /β3 We also need to find Maximum Volume V = ΟhR2 β (πβ^3)/4 V = ΟR2 Γ 2π /β3 β π/4 Γ (2π /β3)^3 V = (2ππ ^3)/β3 β π/4 Γ(8π ^3)/(3β3) V = (2ππ ^3)/β3 β (2ππ ^3)/(3β3) V = (2ππ ^3)/β3 (1β1/3) V = (2ππ ^3)/β3 Γ2/3 V = (ππ πΉ^π)/(πβπ) cubic unit