Chapter 6 Class 12 Application of Derivatives
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 26 (MCQ) Important Deleted for CBSE Board 2025 Exams
Example 23 Important You are here
Example 25 Important
Example 26 Important
Example 28 Important
Ex 6.3, 1 (i) Important
Ex 6.3, 5 (i)
Ex 6.3,7 Important
Ex 6.3,11 Important
Ex 6.3,18 Important
Ex 6.3, 20 Important
Ex 6.3,23 Important
Ex 6.3, 26 Important
Ex 6.3,28 (MCQ) Important
Question 14 Important Deleted for CBSE Board 2025 Exams
Example 33 Important
Misc 3 Important
Misc 8 Important
Misc 10 Important
Misc 14 Important
Question 6 (MCQ) Deleted for CBSE Board 2025 Exams
Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Example 23 Find the shortest distance of the point (0, c) from the parabola š¦=š„2, where 0 ā¤ c ā¤ 5. Let (ā ,š) be any point on parabola š¦=š„2 Let D be required Distance between (ā , š) & (0 , š) D = ā((0āā)^2+(š āš)^2 ) D = ā((āā)^2+(š āš)^2 ) D = ā(š^š+(š āš)^š ) Also, Since point (ā , š) is on the parabola š¦=š„2 (š , š) will satisfy the equation of parabola Putting š„=ā , š¦=š in equation š=š^š Putting value of š=ā^2 D = ā(ā^2+(š āš)^2 ) D = ā(š+(šāš)^š ) We need to minimize D, but D has a square root Which will be difficult to differentiate Let Z = D2 Z = š+(šāš)^2 Since D is positive, D is minimum if D2 is minimum So, we minimize Z = D2 Differentiating Z Z =š+(šāš)^2 Differentiating w.r.t. k Zā = š(š + (š ā š)^2 )/šš Zā = 1 + 2 (c ā k) Ć (c ā k)ā Zā = 1 + 2 (c ā k) Ć (0 ā 1) Zā = 1 ā 2 (c ā k) Zā = 1 ā 2c ā 2k Putting Zā = 0 1 ā 2c ā 2k = 0 2k = 2c ā 1 k = (šš ā š)/š Now, checking sign of š^ā²ā² " " šš/šš=4šā2š Differentiating again w.r.t k (š^2 š)/(šā^2 ) = 4 ā0 (š ^š š)/(š š^š ) = š Since š^ā²ā² > 0 for k = (2š ā 1)/2 ā“ Z is minimum when k = (2š ā 1)/2 Thus, D is Minimum at š=(šš ā š)/š Finding Minimum value of D D = ā(š+(šāš)^2 ) Putting š=(2š ā 1)/2 D = ā(((2š ā 1)/2)+(šā((2š ā 1)/2))^2 ) D = ā(((2š ā 1)/2)+((2š ā 2š ā 1)/2)^2 ) D = ā(((2š ā 1)/2)+((ā1)/2)^2 ) D = ā(((2š ā 1)/2)+1/4) D = ā(šā1/2+1/4) D = ā(šā1/4) D = ā(4š ā 1)/2 Hence, shortest distance is ā(šš ā š)/š