web analytics

Ex 6.5, 20 - Show that cylinder of given surface, max volume - Minima/ maxima (statement questions) - Geometry questions

Slide15.JPG Slide16.JPG

  1. Class 12
  2. Important Question for exams Class 12
Ask Download


Ex 6.5,20 Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base. Let 𝑟 , ℎ be the Radius & Height of Cylinder respectively & 𝑉 , 𝑆 be the Volume & Surface area of Cylinder respectively Given Surface Area of Cylinder = 2𝜋 𝑟﷮2﷯+ 2𝜋𝑟ℎ S = 2𝜋 𝑟﷮2﷯+ 2𝜋𝑟ℎ S – 2𝜋 𝑟﷮2﷯= 2𝜋𝑟ℎ 𝑆 − 2𝜋 𝑟﷮2﷯﷮2𝜋𝑟﷯=ℎ ℎ= 𝑆 − 2𝜋 𝑟﷮2﷯﷮2𝜋𝑟﷯ Volume of Cylinder = 𝜋𝑟2ℎ V = 𝜋𝑟2ℎ We need to maximum volume Now, V = πr2h V = πr2 𝑆 − 2𝜋 𝑟﷮2﷯﷮2𝜋𝑟﷯﷯ V = 𝜋 𝑟﷮2﷯﷮2𝜋𝑟﷯ 𝑆 −2𝜋 𝑟﷮2﷯﷯ V = 𝑟﷮2﷯ 𝑆 −2𝜋 𝑟﷮2﷯﷯ V = 1﷮2﷯ 𝑆𝑟 −2𝜋 𝑟﷮3﷯﷯ Diff w.r.t 𝑟 𝑑𝑉﷮𝑑𝑟﷯= 1﷮2﷯ 𝑑 𝑠𝑟−2𝜋 𝑟﷮3﷯﷯﷮𝑑𝑟﷯ 𝑑𝑉﷮𝑑𝑟﷯= 1﷮2﷯ 𝑠−6𝜋 𝑟﷮2﷯﷯ Putting 𝑑𝑣﷮𝑑𝑟﷯=0 1﷮2﷯ 𝑠−6𝜋 𝑟﷮2﷯﷯=0 𝑠−6𝜋 𝑟﷮2﷯=0 Putting value of 𝑆 = 2𝜋𝑟2+ 2𝜋𝑟ℎ 2𝜋 𝑟﷮2﷯+2𝜋𝑟ℎ﷯−6𝜋 𝑟﷮2﷯=0 −4𝜋 𝑟2 + 2𝜋𝑟ℎ = 0 2𝜋𝑟ℎ −2𝑟+ℎ﷯=0 2𝜋𝑟 ℎ−2𝑟﷯=0 ℎ−2𝑟=0 ℎ=2𝑟 Finding 𝑑﷮2﷯𝑣﷮𝑑 𝑟﷮2﷯﷯ 𝑑𝑉﷮𝑑𝑟﷯= 1﷮2﷯ 𝑠−6𝜋 𝑟﷮2﷯﷯ 𝑑﷮2﷯𝑉﷮𝑑 𝑟﷮2﷯﷯= 1﷮2﷯ 𝑑 𝑆 − 6𝜋 𝑟﷮2﷯﷯﷮𝑑𝑟﷯ 𝑑﷮2﷯𝑣﷮𝑑 𝑟﷮2﷯﷯= 1﷮2﷯ 0−12𝜋𝑟﷯ 𝑑﷮2﷯𝑣﷮𝑑 𝑟﷮2﷯﷯=−6𝜋𝑟 < 0 ∴ 𝑑﷮2﷯𝑣﷮𝑑 𝑟﷮2﷯﷯<0 for ℎ=2𝑟 Hence volume of a cylinder is Maximum when 𝒉=𝟐𝒓

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .