**Example 47**

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Example 47 Let A = {1, 2, 3}. Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three. Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Reflexive means (a, a) should be in relation . So, (1, 1) , (2, 2) , (3, 3) should be in a relation Symmetric means if (a, b) is in relation, then (b, a) should be in relation . We need relation which is not symmetric. So, since (1, 2) is in relation, (2, 1) should not be in relation & since (2, 3) is in relation, (3, 2) should not be in relation Transitive means if (a, b) is in relation, & (b, c) is in relation, then (a, c) is in relation So, if (1, 2) is in relation, & (2, 3) is in relation, then (1, 3 ) should be in relation Relation R1 = { Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } So, smallest relation is R1 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) } We cannot add both (2, 1) & (3, 2) together as it is not symmetric R = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) , (2, 1), (3, 2)} If we add only (3, 1) to R1 R = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 1) } R is reflexive but not symmetric & transitive. So, not possible If we add only (2, 1) to R1 R2 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (2, 1) } R2 is reflexive, transitive but not symmetric If we add only (3, 2) to R1 R3 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 2) } R3 is reflexive, transitive but not symmetric Hence, there are only three possible relations R1 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) } R2 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (2, 1) } R3 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 2) }

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18

Example 19

Example 20

Example 21

Example 22

Example 23 Important

Example 24

Example 25 Important

Example 26

Example 27

Example 28

Example 29

Example 30

Example 31

Example 32

Example 33

Example 34

Example 35

Example 36

Example 37

Example 38

Example 39

Example 40

Example 41

Example 42

Example 43

Example 44

Example 45

Example 46 Important

Example 47 Important You are here

Example 48 Important

Example 49

Example 50

Example 51

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.