


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important You are here
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Example 26 Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Question 11 (a) Deleted for CBSE Board 2024 Exams
Question 11 (b) Deleted for CBSE Board 2024 Exams
Question 11 (c) Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Deleted for CBSE Board 2024 Exams
Question 14 Important Deleted for CBSE Board 2024 Exams
Question 15 Deleted for CBSE Board 2024 Exams
Question 16 Deleted for CBSE Board 2024 Exams
Question 17 Deleted for CBSE Board 2024 Exams
Question 18 Deleted for CBSE Board 2024 Exams
Question 19 Deleted for CBSE Board 2024 Exams
Question 20 Important Deleted for CBSE Board 2024 Exams
Question 21 Deleted for CBSE Board 2024 Exams
Question 22 Deleted for CBSE Board 2024 Exams
Question 23 Deleted for CBSE Board 2024 Exams
Question 24 (a) Deleted for CBSE Board 2024 Exams
Question 24 (b) Deleted for CBSE Board 2024 Exams
Question 25 Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}. R = {(a, b) : both a and b are either odd or even} Check reflexive Since, a & a are the same numbers both a and a must be either odd or even, ∴ (a, a) ∈ R, So, R is reflexive Check symmetric If both a & b are either odd or even then, both b & a are either odd or even So, if (a, b) ∈ R , then (b, a)∈ R So, R is symmetric Check transitive If both a & b are either odd or even and both b & c are either odd or even , then a, b, c are either odd or even So, both a & c are either odd or even So, if (a, b) ∈ R and (b, c) ∈ R , then (a, c) ∈ R. So, R is transitive Since R is reflexive, symmetric and transitive Hence, R is an equivalence relation. Further, show that all the elements of the subset {1, 3, 5, 7} are related to each other and all the elements of the subset {2, 4, 6} are related to each other, but no element of the subset {1, 3, 5, 7} is related to any element of the subset {2, 4, 6}. R = {(a, b) : both a and b are either odd or even} In {1, 3, 5, 7}, All elements are odd, Hence, element of {1, 3, 5, 7 } are related to each other In {2, 4, 6}, All elements are even, Hence, element of {2, 4, 6} are related to each other In {1, 3, 5, 7} & {2, 4, 6}, Elements of {1, 3, 5, 7} are odd Elements of {2, 4, 6} are even One element from {1, 3, 5, 7} is odd and one element from {2, 4, 6} is even Hence, both elements cannot be either odd or even Hence, {1, 3, 5, 7} & {2, 4, 6} are not related to each other