Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Jan. 28, 2020 by Teachoo

Transcript

Example 47 Let A = {1, 2, 3}. Then show that the number of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three. Total possible pairs = {(1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Each relation should have (1, 2) and (2, 3) in it For other pairs, Let’s check which pairs will be in relation, and which won’t be Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } Reflexive means (a, a) should be in relation . So, (1, 1) , (2, 2) , (3, 3) should be in a relation Symmetric means if (a, b) is in relation, then (b, a) should be in relation . We need relation which is not symmetric. So, since (1, 2) is in relation, (2, 1) should not be in relation & since (2, 3) is in relation, (3, 2) should not be in relation Transitive means if (a, b) is in relation, & (b, c) is in relation, then (a, c) is in relation So, if (1, 2) is in relation, & (2, 3) is in relation, then (1, 3) should be in relation Relation R1 = { Total possible pairs = { (1, 1) , (1, 2), (1, 3), (2, 1) , (2, 2), (2, 3), (3, 1) , (3, 2), (3, 3) } So, smallest relation is R1 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) } Checking more relations We cannot add both (2, 1) & (3, 2) together as it is not symmetric R = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) , (2, 1), (3, 2)} If we add only (3, 1) to R1 R = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 1) } R is reflexive but not symmetric & transitive. So, not possible If we add only (2, 1) to R1 R2 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (2, 1) } R2 is reflexive, transitive but not symmetric If we add only (3, 2) to R1 R3 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 2) } R3 is reflexive, transitive but not symmetric Hence, there are only three possible relations R1 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3) } R2 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (2, 1)} R3 = { (1, 2), (2, 3), (1, 1), (2, 2), (3, 3), (1, 3), (3, 2)}

Examples

Example 1

Example 2

Example 3

Example 4 Important

Example 5

Example 6 Important

Example 7

Example 8

Example 9

Example 10

Example 11 Important

Example 12 Important

Example 13 Important

Example 14 Important

Example 15

Example 16

Example 17

Example 18 Important

Example 19 Important

Example 20

Example 21

Example 22

Example 23 Important

Example 24

Example 25 Important

Example 26

Example 27 Important

Example 28

Example 29

Example 30

Example 31

Example 32

Example 33

Example 34

Example 35

Example 36

Example 37

Example 38

Example 39

Example 40

Example 41 Important

Example 42 Important

Example 43 Important

Example 44

Example 45 Important

Example 46 Important

Example 47 Important You are here

Example 48 Important

Example 49

Example 50

Example 51 Important

Chapter 1 Class 12 Relation and Functions

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.