Example 17 - Chapter 1 Class 12 Relation and Functions
Last updated at April 17, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important You are here
Example 18
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Example 26 Important
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 (a) Deleted for CBSE Board 2025 Exams
Question 11 (b) Deleted for CBSE Board 2025 Exams
Question 11 (c) Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Question 14 Important Deleted for CBSE Board 2025 Exams
Question 15 Deleted for CBSE Board 2025 Exams
Question 16 Deleted for CBSE Board 2025 Exams
Question 17 Deleted for CBSE Board 2025 Exams
Question 18 Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Question 20 Important Deleted for CBSE Board 2025 Exams
Question 21 Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Question 23 Deleted for CBSE Board 2025 Exams
Question 24 (a) Deleted for CBSE Board 2025 Exams
Question 24 (b) Deleted for CBSE Board 2025 Exams
Question 25 Deleted for CBSE Board 2025 Exams
Last updated at April 17, 2024 by Teachoo
Example 17 (Method 1) Let f : N → Y be a function defined as f (x) = 4x + 3, where, Y = {y ∈ N: y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse. Checking inverse Step 1 f(x) = 4x + 3 Let f(x) = y y = 4x + 3 y – 3 = 4x 4x = y – 3 x = (𝑦 − 3)/4 Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY g is the inverse of f Let g(y) = (𝑦 − 3)/4 where g: Y → N Step 2: gof = g(f(x)) = g(4x + 3) = ((4𝑥 + 3) − 3)/4 = (4𝑥 + 3 − 3)/4 = 4𝑥/4 = x = IN Step 3: fog = f(g(y)) = f((𝑦 − 3)/4) = 4 ((𝑦 − 3)/4) + 3 = y – 3 + 3 = y + 0 = y = IY Since gof = IN and fog = IY, f is invertible & Inverse of f = g(y) = (𝒚 − 𝟑)/𝟒 Rough Checking inverse of f:X → Y Step 1: Calculate g: Y → X Step 2: Prove gof = IX Step 3: Prove fog = IY g is the inverse of f Example 17 (Method 2) Let f : N → Y be a function defined as f (x) = 4x + 3, where, Y = {y ∈ N: y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse. f is invertible if f is one-one and onto Checking one-one f(x1) = 4x1 + 3 f(x2) = 4x2 + 3 Putting f(x1) = f(x2) 4x1 + 3 = 4x2 + 3 4x1 = 4x2 x1 = x2Rough One-one Steps: 1. Calculate f(x1) 2. Calculate f(x2) 3. Putting f(x1) = f(x2) we have to prove x1 = x2 If f(x1) = f(x2) , then x1 = x2 ∴ f is one-one Checking onto f(x) = 4x + 3 Let f(x) = y, where y ∈ Y y = 4x + 3 y – 3 = 4x 4x = y – 3 x = (𝑦 − 3)/4 Now, Checking for y = f(x) Putting value of x in f(x) f(x) = f((𝑦 − 3)/4) = 4((𝑦 − 3)/4) + 3 = y − 3 + 3 = y For every y in Y = {y ∈ N: y = 4x + 3 for some x ∈ N}. There is a value of x which is a natural number such that f(x) = y Thus, f is onto Since f is one-one and onto f is invertible Finding inverse Inverse of x = 𝑓^(−1) (𝑦) = (𝑦 − 3)/4 ∴ Inverse of f = g(y) = (𝒚 − 𝟑)/𝟒 where g: Y → N