Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 Important
Example 12 Important
Example 13 Important
Example 14 Important
Example 15
Example 16
Example 17 Important
Example 18
Example 19 Important
Example 20 Important
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Example 26 Important
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Question 11 (a) Deleted for CBSE Board 2025 Exams You are here
Question 11 (b) Deleted for CBSE Board 2025 Exams
Question 11 (c) Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Question 14 Important Deleted for CBSE Board 2025 Exams
Question 15 Deleted for CBSE Board 2025 Exams
Question 16 Deleted for CBSE Board 2025 Exams
Question 17 Deleted for CBSE Board 2025 Exams
Question 18 Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Question 20 Important Deleted for CBSE Board 2025 Exams
Question 21 Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Question 23 Deleted for CBSE Board 2025 Exams
Question 24 (a) Deleted for CBSE Board 2025 Exams
Question 24 (b) Deleted for CBSE Board 2025 Exams
Question 25 Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 28 Let S = {1, 2, 3}. Determine whether the functions f : S → S defined as below have inverses. Find f–1, if it exists. (a) f= {(1, 1), (2, 2), (3, 3)} A function has inverse if it is one-one and onto Check one one f = {(1, 1), (2, 2), (3, 3)} Since each element has unique image, f is one-one Check onto Since for every image, there is a corresponding element, ∴ f is onto. Since function is both one-one and onto it will have inverse f = {(1, 1), (2, 2), (3, 3)} f-1 = {(1, 1), (2, 2), (3, 3)}