

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Plane
Question 1 (b) Deleted for CBSE Board 2024 Exams
Question 1 (c) Important Deleted for CBSE Board 2024 Exams
Question 1 (d) Important Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 (a) Deleted for CBSE Board 2024 Exams
Question 3 (b) Deleted for CBSE Board 2024 Exams
Question 3 (c) Important Deleted for CBSE Board 2024 Exams
Question 4 (a) Important Deleted for CBSE Board 2024 Exams
Question 4 (b) Deleted for CBSE Board 2024 Exams
Question 4 (c) Deleted for CBSE Board 2024 Exams
Question 4 (d) Important Deleted for CBSE Board 2024 Exams
Question 5 (a) Important Deleted for CBSE Board 2024 Exams
Question 5 (b) Deleted for CBSE Board 2024 Exams
Question 6 (a) Important Deleted for CBSE Board 2024 Exams
Question 6 (b) Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams You are here
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Important Deleted for CBSE Board 2024 Exams
Question 13 (a) Important Deleted for CBSE Board 2024 Exams
Question 13 (b) Important Deleted for CBSE Board 2024 Exams
Question 13 (c) Deleted for CBSE Board 2024 Exams
Question 13 (d) Deleted for CBSE Board 2024 Exams
Question 13 (e) Deleted for CBSE Board 2024 Exams
Question 14 (a) Important Deleted for CBSE Board 2024 Exams
Question 14 (b) Deleted for CBSE Board 2024 Exams
Question 14 (c) Deleted for CBSE Board 2024 Exams
Question 14 (d) Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Question 10 Find the vector equation of plane passing through the intersection of the planes 𝑟 ⃗ . (2𝑖 ̂ + 2𝑗 ̂ − 3𝑘 ̂) = 7, 𝑟 ⃗ .(2𝑖 ̂ + 5𝑗 ̂ + 3𝑘 ̂) = 9 and through the point (2, 1, 3).The vector equation of a plane passing through the intersection of planes 𝑟 ⃗. (𝑛1) ⃗ = d1 and 𝑟 ⃗. (𝑛2) ⃗ = d2 and also through the point (x1, y1, z1) is 𝒓 ⃗.((𝒏𝟏) ⃗ + 𝜆(𝒏𝟐) ⃗) = d1 + 𝜆d2 Given, the plane passes through The vector equation of a plane passing through the intersection of planes 𝑟 ⃗. (𝑛1) ⃗ = d1 and 𝑟 ⃗. (𝑛2) ⃗ = d2 and also through the point (x1, y1, z1) is 𝒓 ⃗.((𝒏𝟏) ⃗ + 𝜆(𝒏𝟐) ⃗) = d1 + 𝜆d2 Given, the plane passes through 𝒓 ⃗. (2𝒊 ̂ + 2𝒋 ̂ − 3𝒌 ̂) = 7 Comparing with 𝑟 ⃗.(𝑛1) ⃗ = 𝑑1, (𝑛1) ⃗ = 2𝑖 ̂ + 2𝑗 ̂ − 3𝑘 ̂ & d1 = 7 𝒓 ⃗. (2𝒊 ̂ + 5𝒋 ̂ + 3𝒌 ̂) = 9 Comparing with 𝑟 ⃗.(𝑛2) ⃗ = 𝑑2, (𝑛2) ⃗ = 2𝑖 ̂ + 5𝑗 ̂ + 3𝑘 ̂ & d2 = 9 So, equation of the plane is 𝑟 ⃗.["(2" 𝑖 ̂+"2" 𝑗 ̂" " −"3" 𝑘 ̂")" +"𝜆(2" 𝑖 ̂" " + 5𝑗 ̂" " + "3" 𝑘 ̂")" ] = 7 + 𝜆.9 𝑟 ⃗. ["2" 𝑖 ̂" " +" 2" 𝑗 ̂" " − "3" 𝑘 ̂ + 2"𝜆" 𝑖 ̂ + 5"𝜆" 𝑗 ̂ + 3"𝜆" 𝑘 ̂ ] = 7 + 9"𝜆" 𝒓 ⃗. ["(2" +"2𝜆" )𝒊 ̂" " +"(2" +"5𝜆" )𝒋 ̂ +"(−" 𝟑+"3𝜆" )𝒌 ̂ ] = 9"𝜆" + 7 Now, to find 𝜆 , put 𝒓 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂).["(2 " + "2𝜆" )𝑖 ̂" " + "(2" +"5𝜆" )𝑗 ̂ +"(−" 3" " +" 3𝜆" )𝑘 ̂ ] = 9𝜆 + 7 x"(2 "+" 2𝜆")" "+ "y (2 "+" 5𝜆")𝑗 ̂ + 𝑧"("−3+"3𝜆")𝑘 ̂ = 9𝜆 + 7 The plane passes through (2, 1, 3) Putting (2, 1, 3) in (2), 2(2 + 2𝜆) + 1(2 + 5𝜆) + 3(−3 + 3𝜆) = 9𝜆 + 7 4 + 4𝜆 + 2 + 5𝜆 + (−9) + 9𝜆 = 9𝜆 + 7 18𝜆 − 9𝜆 = 7 + 3 9𝜆 = 10 ∴ 𝜆 = 𝟏𝟎/𝟗 Putting value of 𝜆 in (1), 𝑟 ⃗. [(2+ 2. 10/9) 𝑖 ̂ + (2+ 5. 10/9) 𝑗 ̂ +("−" 3+ 3. 10/9) 𝑘 ̂ ] = 9.10/9 + 7 𝑟 ⃗. [(2 + 20/9) 𝑖 ̂ +(2 + 50/9) 𝑗 ̂ +("−" 3 + 30/9) 𝑘 ̂ ] = 10 + 7 𝑟 ⃗. [38/9 𝑖 ̂+ 68/9 𝑗 ̂ + 3/9 𝑘 ̂ ] = 17 1/9 𝑟 ⃗. (38𝑖 ̂ + 68𝑗 ̂ + 3𝑘 ̂ ) = 17 𝑟 ⃗.(38𝑖 ̂+68𝑗 ̂+3𝑘 ̂ ) = 17 × 9 𝒓 ⃗.(𝟑𝟖𝒊 ̂+𝟔𝟖𝒋 ̂+𝟑𝒌 ̂ ) = 153