Subscribe to our Youtube Channel - https://www.youtube.com/channel/UCZBx269Tl5Os5NHlSbVX4Kg

Slide53.JPG

Slide54.JPG
Slide55.JPG

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

Transcript

Ex 11.3, 10 Find the vector equation of plane passing through the intersection of the planes ๐‘Ÿ โƒ— . (2๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 3๐‘˜ ฬ‚) = 7, ๐‘Ÿ โƒ— .(2๐‘– ฬ‚ + 5๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = 9 and through the point (2, 1, 3).The vector equation of a plane passing through the intersection of planes ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1 and ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2 and also through the point (x1, y1, z1) is ๐’“ โƒ—.((๐’๐Ÿ) โƒ— + ๐œ†(๐’๐Ÿ) โƒ—) = d1 + ๐œ†d2 Given, the plane passes through The vector equation of a plane passing through the intersection of planes ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1 and ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2 and also through the point (x1, y1, z1) is ๐’“ โƒ—.((๐’๐Ÿ) โƒ— + ๐œ†(๐’๐Ÿ) โƒ—) = d1 + ๐œ†d2 Given, the plane passes through ๐’“ โƒ—. (2๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 3๐’Œ ฬ‚) = 7 Comparing with ๐‘Ÿ โƒ—.(๐‘›1) โƒ— = ๐‘‘1, (๐‘›1) โƒ— = 2๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 3๐‘˜ ฬ‚ & d1 = 7 ๐’“ โƒ—. (2๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 3๐’Œ ฬ‚) = 9 Comparing with ๐‘Ÿ โƒ—.(๐‘›2) โƒ— = ๐‘‘2, (๐‘›2) โƒ— = 2๐‘– ฬ‚ + 5๐‘— ฬ‚ + 3๐‘˜ ฬ‚ & d2 = 9 So, equation of the plane is ๐‘Ÿ โƒ—.["(2" ๐‘– ฬ‚+"2" ๐‘— ฬ‚" " โˆ’"3" ๐‘˜ ฬ‚")" +"๐œ†(2" ๐‘– ฬ‚" " + 5๐‘— ฬ‚" " + "3" ๐‘˜ ฬ‚")" ] = 7 + ๐œ†.9 ๐‘Ÿ โƒ—. ["2" ๐‘– ฬ‚" " +" 2" ๐‘— ฬ‚" " โˆ’ "3" ๐‘˜ ฬ‚ + 2"๐œ†" ๐‘– ฬ‚ + 5"๐œ†" ๐‘— ฬ‚ + 3"๐œ†" ๐‘˜ ฬ‚ ] = 7 + 9"๐œ†" ๐’“ โƒ—. ["(2" +"2๐œ†" )๐’Š ฬ‚" " +"(2" +"5๐œ†" )๐’‹ ฬ‚ +"(โˆ’" ๐Ÿ‘+"3๐œ†" )๐’Œ ฬ‚ ] = 9"๐œ†" + 7 Now, to find ๐œ† , put ๐’“ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚).["(2 " + "2๐œ†" )๐‘– ฬ‚" " + "(2" +"5๐œ†" )๐‘— ฬ‚ +"(โˆ’" 3" " +" 3๐œ†" )๐‘˜ ฬ‚ ] = 9๐œ† + 7 x"(2 "+" 2๐œ†")" "+ "y (2 "+" 5๐œ†")๐‘— ฬ‚ + ๐‘ง"("โˆ’3+"3๐œ†")๐‘˜ ฬ‚ = 9๐œ† + 7 The plane passes through (2, 1, 3) Putting (2, 1, 3) in (2), 2(2 + 2๐œ†) + 1(2 + 5๐œ†) + 3(โˆ’3 + 3๐œ†) = 9๐œ† + 7 4 + 4๐œ† + 2 + 5๐œ† + (โˆ’9) + 9๐œ† = 9๐œ† + 7 18๐œ† โˆ’ 9๐œ† = 7 + 3 9๐œ† = 10 โˆด ๐œ† = ๐Ÿ๐ŸŽ/๐Ÿ— Putting value of ๐œ† in (1), ๐‘Ÿ โƒ—. [(2+ 2. 10/9) ๐‘– ฬ‚ + (2+ 5. 10/9) ๐‘— ฬ‚ +("โˆ’" 3+ 3. 10/9) ๐‘˜ ฬ‚ ] = 9.10/9 + 7 ๐‘Ÿ โƒ—. [(2 + 20/9) ๐‘– ฬ‚ +(2 + 50/9) ๐‘— ฬ‚ +("โˆ’" 3 + 30/9) ๐‘˜ ฬ‚ ] = 10 + 7 ๐‘Ÿ โƒ—. [38/9 ๐‘– ฬ‚+ 68/9 ๐‘— ฬ‚ + 3/9 ๐‘˜ ฬ‚ ] = 17 1/9 ๐‘Ÿ โƒ—. (38๐‘– ฬ‚ + 68๐‘— ฬ‚ + 3๐‘˜ ฬ‚ ) = 17 ๐‘Ÿ โƒ—.(38๐‘– ฬ‚+68๐‘— ฬ‚+3๐‘˜ ฬ‚ ) = 17 ร— 9 ๐’“ โƒ—.(๐Ÿ‘๐Ÿ–๐’Š ฬ‚+๐Ÿ”๐Ÿ–๐’‹ ฬ‚+๐Ÿ‘๐’Œ ฬ‚ ) = 153

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.