

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 11.3
Ex 11.3, 1 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 1 (c) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 1 (d) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 2 Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (a) Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (c) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (c) Deleted for CBSE Board 2023 Exams You are here
Ex 11.3, 4 (d) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 5 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 5 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 6 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 6 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 7 Deleted for CBSE Board 2023 Exams
Ex 11.3, 8 Deleted for CBSE Board 2023 Exams
Ex 11.3, 9 Deleted for CBSE Board 2023 Exams
Ex 11.3, 10 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 11 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 12 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (b) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (c) Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (d) Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (e) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (c) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (d) Important Deleted for CBSE Board 2023 Exams
Last updated at Aug. 24, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 11.3, 4 In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin. (c) x + y + z = 1 Assume a point P (x1, y1, z1) on the plane. Since perpendicular to plane is parallel to normal vector Vector is parallel to normal vector to the plane. Given, equation of the plane is x + y + z = 1 1x + 1y + 1z = 1 Since, and are parallel their direction ratios are proportional. Finding direction ratios Direction ratios are proportional So, 1 2 = 1 2 = 1 2 = k 1 1 = 1 1 = 1 1 = k x1 = y1 = z1 = k Also, point P(x1, y1, z1) lies in the given plane. Putting P (k, k, k) in x + y + z = 1, k + k + k = 1 3k = 1 k = 1 3 So, 1 = k = 1 3 , 1 = k = 1 3 , 1 = k = 1 3 Therefore, coordinate of foot of perpendicular are , ,