

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 11.3
Ex 11.3, 1 (b)
Ex 11.3, 1 (c) Important
Ex 11.3, 1 (d) Important
Ex 11.3, 2
Ex 11.3, 3 (a)
Ex 11.3, 3 (b)
Ex 11.3, 3 (c) Important
Ex 11.3, 4 (a) Important
Ex 11.3, 4 (b)
Ex 11.3, 4 (c) You are here
Ex 11.3, 4 (d) Important
Ex 11.3, 5 (a) Important
Ex 11.3, 5 (b)
Ex 11.3, 6 (a) Important
Ex 11.3, 6 (b)
Ex 11.3, 7
Ex 11.3, 8
Ex 11.3, 9
Ex 11.3, 10 Important
Ex 11.3, 11 Important
Ex 11.3, 12 Important
Ex 11.3, 13 (a) Important
Ex 11.3, 13 (b) Important
Ex 11.3, 13 (c)
Ex 11.3, 13 (d)
Ex 11.3, 13 (e)
Ex 11.3, 14 (a) Important
Ex 11.3, 14 (b)
Ex 11.3, 14 (c)
Ex 11.3, 14 (d) Important
Last updated at Aug. 24, 2021 by Teachoo
Ex 11.3, 4 In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin. (c) x + y + z = 1 Assume a point P (x1, y1, z1) on the plane. Since perpendicular to plane is parallel to normal vector Vector is parallel to normal vector to the plane. Given, equation of the plane is x + y + z = 1 1x + 1y + 1z = 1 Since, and are parallel their direction ratios are proportional. Finding direction ratios Direction ratios are proportional So, 1 2 = 1 2 = 1 2 = k 1 1 = 1 1 = 1 1 = k x1 = y1 = z1 = k Also, point P(x1, y1, z1) lies in the given plane. Putting P (k, k, k) in x + y + z = 1, k + k + k = 1 3k = 1 k = 1 3 So, 1 = k = 1 3 , 1 = k = 1 3 , 1 = k = 1 3 Therefore, coordinate of foot of perpendicular are , ,