Ex 11.3, 6 - Find equation of planes that passes through 3 points

Ex 11.3, 6 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2

Ex 11.3, 6 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3
Ex 11.3, 6 - Chapter 11 Class 12 Three Dimensional Geometry - Part 4

 

 

  1. Chapter 11 Class 12 Three Dimensional Geometry (Term 2)
  2. Serial order wise

Transcript

Ex 11.3, 6 (Introduction) Find the equations of the planes that passes through three points. (a) (1, 1, โ€“ 1), (6, 4, โ€“ 5), (โ€“ 4, โ€“ 2, 3) Vector equation of a plane passing through three points with position vectors ๐‘Ž โƒ—, ๐‘ โƒ—, ๐‘ โƒ— is ("r" โƒ— โˆ’ ๐‘Ž โƒ—) . [(๐‘ โƒ—โˆ’๐‘Ž โƒ—)ร—(๐‘ โƒ—โˆ’๐‘Ž โƒ—)] = 0 Ex 11.3, 6 Find the equations of the planes that passes through three points. (a) (1, 1, โ€“1), (6, 4, โ€“5), (โ€“4, โ€“2, 3) Vector equation of a plane passing through three points with position vectors ๐‘Ž โƒ—, ๐‘ โƒ—, ๐‘ โƒ— is ("r" โƒ— โˆ’ ๐’‚ โƒ—) . [(๐’ƒ โƒ—โˆ’๐’‚ โƒ—)ร—(๐’„ โƒ—โˆ’๐’‚ โƒ—)] = 0 Now, the plane passes through the points (๐’ƒ โƒ— โˆ’ ๐’‚ โƒ—) = (6๐‘– ฬ‚ + 4๐‘— ฬ‚ โ€“ 5๐‘˜ ฬ‚) โˆ’ (1๐‘– ฬ‚ + 1๐‘— ฬ‚ โˆ’ 1๐‘˜ ฬ‚) = (6 โˆ’1)๐‘– ฬ‚ + (4 โˆ’ 1)๐‘— ฬ‚ + (โˆ’5 โˆ’ (โˆ’1)) ๐‘˜ ฬ‚ = 5๐’Š ฬ‚ + 3๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚ A (1, 1, โˆ’1) ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 1๐‘— ฬ‚ โˆ’ 1๐‘˜ ฬ‚ B (6, 4, โˆ’5) ๐‘ โƒ— = 6๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 5๐‘˜ ฬ‚ C ( โˆ’4, โˆ’2, 3) ๐‘ โƒ— = โˆ’4๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ (๐’„ โƒ— โˆ’ ๐’‚ โƒ—) = (โˆ’4๐‘– ฬ‚ โˆ’ 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) โˆ’ (1๐‘– ฬ‚ + 1๐‘— ฬ‚ โˆ’ 1๐‘˜ ฬ‚) = (โˆ’4 โˆ’ 1)๐‘– ฬ‚ +(โˆ’2 โˆ’ 1)๐‘— ฬ‚ + (3 โˆ’ (โˆ’1)) ๐‘˜ ฬ‚ = โˆ’5๐’Š ฬ‚ โˆ’ 3๐’‹ ฬ‚ + 4๐’Œ ฬ‚ (๐’ƒ โƒ— โˆ’ ๐’‚ โƒ—) ร— (๐’„ โƒ— โˆ’ ๐’‚ โƒ—) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@5&3&โˆ’4@โˆ’5&โˆ’3&4)| = โ€“ |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@5&3&โˆ’4@ 5& 3&โˆ’4)| = ๐ŸŽ โƒ— This implies, the three points are collinear. Using property: Since the two rows of the determinant are same, the value of determinant is zero. โˆด Vector equation of plane is [๐‘Ÿ โƒ—โˆ’(๐‘– ฬ‚+๐‘— ฬ‚ โˆ’๐‘˜ ฬ‚ )] . 0 โƒ— = 0 Since, the above equation is satisfied for all values of ๐‘Ÿ โƒ—, Therefore, there will be infinite planes passing through the given 3 collinear points.

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.