


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Feb. 1, 2020 by Teachoo
Transcript
Ex 11.3, 5 (Introduction) Find the vector and cartesian equations of the planes (a) that passes through the point (1, 0, โ2) and the normal to the plane is ๐ ฬ + ๐ ฬ โ ๐ ฬ.Vector equation of a plane passing through a point (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is [๐ โ โ(๐ฅ1๐ ฬ+๐ฆ1๐ ฬ+๐ง1๐ ฬ)]. (A๐ ฬ + B๐ ฬ + C๐ ฬ) = 0 or (๐ โ โ ๐ โ).๐ โ = 0 ("A" ๐) โ is perpendicular to "n" โ So, ("A" P) โ . "n" โ = 0 ("r" โ โ "a" โ)."n" โ = 0 Ex 11.3, 5 Find the vector and Cartesian equations of the planes (a) that passes through the point (1, 0, โ 2) and the normal to the plane is ๐ ฬ + ๐ ฬ โ ๐ ฬ.Vector equation Equation of plane passing through point A whose position vector is ๐ โ & perpendicular to ๐ โ is (๐ โ โ ๐ โ) . ๐ โ = 0 Given Plane passes through (1, 0, โ2) So, ๐ โ = 1๐ ฬ + 0๐ ฬ โ 2๐ ฬ Normal to plane = ๐ ฬ + ๐ ฬ โ ๐ ฬ ๐ โ = ๐ ฬ + ๐ ฬ โ ๐ ฬ Vector equation of plane is (๐ โ โ ๐ โ) . ๐ โ = 0 [๐ โโ("1" ๐ ฬ+"0" ๐ ฬโ"2" ๐ ฬ)].(๐ ฬ + ๐ ฬ โ ๐ ฬ) = 0 [๐ โโ(๐ ฬโ"2" ๐ ฬ)] . (๐ ฬ+๐ ฬโ๐ ฬ) = 0 Now, Finding Cartesian form using two methods Cartesian form (Method 1) Vector equation is [๐ โโ(๐ ฬโ"2" ๐ ฬ)] . (๐ ฬ+๐ ฬโ๐ ฬ) = 0 Put ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ [("x" ๐ ฬ+"y" ๐ ฬ+"z" ๐ ฬ )โ("1" ๐ ฬ+"0" ๐ ฬโ"2" ๐ ฬ)].(1๐ ฬ + 1๐ ฬ โ 1๐ ฬ) = 0 [("x" โ1) ๐ ฬ+("y" โ0) ๐ฝ ฬ+(๐งโ(โ2))๐ ฬ ].(1๐ ฬ + 1๐ ฬ โ 1๐ ฬ) = 0 1(x โ 1) + 1(y โ 0) โ 1 (z + 2) = 0 x โ 1 + y โ z โ 2 = 0 x + y โ z = 3 Cartesian form (Method 2) Equation of plane passing through (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is A(x โ x1) + B(y โ y1) + C (z โ z1) = 0 Since the plane passes through (1, 0, โ2) x1 = 1, y1 = 0, z1 = 2 And normal is ๐ ฬ + ๐ ฬ โ ๐ ฬ So, Direction ratios of line perpendicular to plane = 1, 1, โ1 โด A = 1, B = 1, C = โ1 Therefore, equation of line in Cartesian form is 1(x โ 1) + 1(y โ 0) โ 1(z โ (โ2)) = 0 x + y โ z = 3 Ex 11.3, 5 Find the vector and cartesian equations of the planes (b) That passes through the point (1, 4, 6) and the normal vector to the plane is ๐ ฬ โ 2๐ ฬ + ๐ ฬ Vector equation Equation of plane passing through point A whose position vector is ๐ โ & perpendicular to ๐ โ is (๐ โ โ ๐ โ) . ๐ โ = 0 Given, Plane passes through (1, 4, 6) So, ๐ โ = 1๐ ฬ + 4๐ ฬ + 6๐ ฬ Normal to plane = ๐ ฬ โ 2๐ ฬ + ๐ ฬ ๐ โ = ๐ ฬ โ 2๐ ฬ + ๐ ฬ Vector equation of plane is (๐ โ โ ๐ โ).๐ โ = 0 [๐ โโ(๐ ฬ+๐๐ ฬ+๐๐ ฬ)] . (๐ ฬ โ 2๐ ฬ + ๐ ฬ) = 0 Now, Finding Cartesian form using two methods Cartesian form (Method 1) : Vector equation is [๐ โโ(๐ ฬ+4๐ ฬ+6๐ ฬ)] . (๐ ฬ โ 2๐ ฬ + ๐ ฬ) = 0 Put ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ [(๐ฅ๐ ฬ+๐ฆ๐ ฬ+๐ง๐ ฬ )โ(1๐ ฬ+4๐ ฬ+6๐ ฬ)]. (1๐ ฬ โ 2๐ ฬ + 1๐ ฬ) = 0 [(๐ฅโ1) ๐ ฬ +(๐ฆโ4) ๐ ฬ+(๐งโ6)๐ ฬ ]. (1๐ ฬ โ 2๐ ฬ + 1๐ ฬ) = 0 1(x โ 1) + (โ2)(y โ 4) + 1 (z โ 6) = 0 x โ 1 โ 2(y โ 4) + z โ 6 = 0 x โ 2y + z + 1 = 0 โด Equation of plane in Cartesian form is x โ 2y + z + 1 = 0. Cartesian form (Method 2) Equation of plane passing through (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is A(x โ x1) + B(y โ y1) + C (z โ z1) = 0 Since the plane passes through (1, 4, 6) x1 = 1, y1 = 4, z1 = 6 And normal is ๐ ฬ โ 2๐ ฬ + ๐ ฬ So, Direction ratios of line perpendicular to plane = 1, โ2, 1 โด A = 1, B = โ2, C = 1 Therefore, equation of line in Cartesian form is 1(x โ 1) โ 2 (y โ 4) + 1(x โ 6) = 0 x โ 2y + z + 1 = 0
Ex 11.3
Ex 11.3, 2
Ex 11.3, 3
Ex 11.3, 4 Important
Ex 11.3, 5 Important You are here
Ex 11.3, 6 Important
Ex 11.3, 7
Ex 11.3, 8
Ex 11.3, 9
Ex 11.3, 10 Important
Ex 11.3, 11 Important
Ex 11.3, 12 Important Not in Syllabus - CBSE Exams 2021
Ex 11.3, 13 (a) Important
Ex 11.3, 13 (b)
Ex 11.3, 13 (c)
Ex 11.3, 13 (d)
Ex 11.3, 13 (e)
Ex 11.3, 14 (a) Important
Ex 11.3, 14 (b)
Ex 11.3, 14 (c)
Ex 11.3, 14 (d)
About the Author