Plane
Question 1 (b)
Question 1 (c) Important
Question 1 (d) Important
Question 2 You are here
Question 3 (a)
Question 3 (b)
Question 3 (c) Important
Question 4 (a) Important
Question 4 (b)
Question 4 (c)
Question 4 (d) Important
Question 5 (a) Important
Question 5 (b)
Question 6 (a) Important
Question 6 (b)
Question 7
Question 8
Question 9
Question 10 Important
Question 11 Important
Question 12 Important
Question 13 (a) Important
Question 13 (b) Important
Question 13 (c)
Question 13 (d)
Question 13 (e)
Question 14 (a) Important
Question 14 (b)
Question 14 (c)
Question 14 (d) Important
Last updated at April 16, 2024 by Teachoo
Question 2 Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3 + 5 6 . Vector equation of a place at a distance d from the origin and normal to the vector is . = d Unit vector of = = 1 ( ) Distance form origin = d = 7 = 3 + 5 6 Magnitude of = 32+52+ 6 2 = 9+25+36 = 70 Now, = 1 ( ) = 1 70 (3 + 5 6 ) = 3 + 5 6 70 Vector equation is . = d . + = 7 Therefore, the vector equation of the plane is . 3 + 5 6 70 = 7