Solve all your doubts with Teachoo Black (new monthly pack available now!)

Ex 11.3

Ex 11.3, 1 (a)
Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (c) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (d) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 2 Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (a) Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (c) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (a) Important Deleted for CBSE Board 2023 Exams You are here

Ex 11.3, 4 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (d) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 5 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 5 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 6 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 6 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 7 Deleted for CBSE Board 2023 Exams

Ex 11.3, 8 Deleted for CBSE Board 2023 Exams

Ex 11.3, 9 Deleted for CBSE Board 2023 Exams

Ex 11.3, 10 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 11 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 12 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (b) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (d) Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (e) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (d) Important Deleted for CBSE Board 2023 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at Aug. 24, 2021 by Teachoo

Ex 11.3, 4 In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin. (a) 2x + 3y + 4z 12 = 0 Assume a point P(x1, y1, z1) on the given plane Since perpendicular to plane is parallel to normal vector Vector is parallel to normal vector to the plane. Given equation of plane is 2x + 3y + 4z 12 = 0 2x + 3y + 4z = 12 Since, and are parallel their direction ratios are proportional. Finding direction ratios Direction ratios are proportional So, 1 2 = 1 2 = 1 2 = k 1 2 = 1 3 = 1 4 = k x1 = 2k , y1 = 3k , z1 = 4k Also, point P(x1, y1, z1) lies in the plane. Putting P (2k, 3k, 4k) in 2x + 3y + 4z = 12, 2(2k) + 3(3k) + 4(4k) = 12 4k + 9k + 16k = 12 29k = 12 k = 12 29 So, 1 = 2k = 2 12 29 = 24 29 1 = 3k = 3 12 29 = 36 29 & 1 = 4k = 4 12 29 = 48 29 Therefore, coordinate of foot of perpendicular are , , ,