Check sibling questions

Ex 11.3

Ex 11.3, 1 (a) Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (c) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 1 (d) Important Deleted for CBSE Board 2023 Exams You are here

Ex 11.3, 2 Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (a) Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 3 (c) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 4 (d) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 5 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 5 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 6 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 6 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 7 Deleted for CBSE Board 2023 Exams

Ex 11.3, 8 Deleted for CBSE Board 2023 Exams

Ex 11.3, 9 Deleted for CBSE Board 2023 Exams

Ex 11.3, 10 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 11 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 12 Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (b) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (d) Deleted for CBSE Board 2023 Exams

Ex 11.3, 13 (e) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (a) Important Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (b) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (c) Deleted for CBSE Board 2023 Exams

Ex 11.3, 14 (d) Important Deleted for CBSE Board 2023 Exams

Chapter 11 Class 12 Three Dimensional Geometry
Serial order wise

Ex 11.3, 1 - Chapter 11 Class 12 Three Dimensional Geometry - Part 8

Ex 11.3, 1 - Chapter 11 Class 12 Three Dimensional Geometry - Part 9
Ex 11.3, 1 - Chapter 11 Class 12 Three Dimensional Geometry - Part 10

This video is only available for Teachoo black users

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!


Transcript

Ex 11.3, 1 In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin. (d) 5y + 8 = 0 For plane ax + by + cz = d Direction ratios of normal = a, b, c Direction cosines : l = π‘Ž/√(π‘Ž^2 + 𝑏^2 +γ€– 𝑐〗^2 ) , m = 𝑏/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) , n = 𝑐/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) Distance from origin = 𝑑/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) Given, equation of the plane is 5y + 8 = 0 5y = βˆ’8 βˆ’5y = 8 0x βˆ’ 5y + 0z = 8 0x βˆ’ 5y + 0z = 8 Comparing with ax + by + cz = d a = 0, b = –5, c = 0 & d = 8 & √(π‘Ž^2+𝑏^2+𝑐^2 ) = √(0^2 + γ€–(βˆ’5)γ€—^2 + 0^2 ) = √25 = 5 Direction cosines of the normal to the plane are l = π‘Ž/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) , m = 𝑏/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) , n = 𝑐/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) l = 0/5, m = (βˆ’5)/5, n = ( 0)/5 ∴ Direction cosines of the normal to the plane are = (0, –1, 0) And, Distance form the origin = 𝑑/√(π‘Ž^2 + 𝑏^2 + 𝑐^2 ) = πŸ–/πŸ“

Ask a doubt (live)
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.