


Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 11.3
Ex 11.3, 1 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 1 (c) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 1 (d) Important Deleted for CBSE Board 2023 Exams You are here
Ex 11.3, 2 Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (a) Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 3 (c) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (c) Deleted for CBSE Board 2023 Exams
Ex 11.3, 4 (d) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 5 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 5 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 6 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 6 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 7 Deleted for CBSE Board 2023 Exams
Ex 11.3, 8 Deleted for CBSE Board 2023 Exams
Ex 11.3, 9 Deleted for CBSE Board 2023 Exams
Ex 11.3, 10 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 11 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 12 Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (b) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (c) Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (d) Deleted for CBSE Board 2023 Exams
Ex 11.3, 13 (e) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (a) Important Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (b) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (c) Deleted for CBSE Board 2023 Exams
Ex 11.3, 14 (d) Important Deleted for CBSE Board 2023 Exams
Last updated at Aug. 24, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 11.3, 1 In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin. (d) 5y + 8 = 0 For plane ax + by + cz = d Direction ratios of normal = a, b, c Direction cosines : l = π/β(π^2 + π^2 +γ πγ^2 ) , m = π/β(π^2 + π^2 + π^2 ) , n = π/β(π^2 + π^2 + π^2 ) Distance from origin = π/β(π^2 + π^2 + π^2 ) Given, equation of the plane is 5y + 8 = 0 5y = β8 β5y = 8 0x β 5y + 0z = 8 0x β 5y + 0z = 8 Comparing with ax + by + cz = d a = 0, b = β5, c = 0 & d = 8 & β(π^2+π^2+π^2 ) = β(0^2 + γ(β5)γ^2 + 0^2 ) = β25 = 5 Direction cosines of the normal to the plane are l = π/β(π^2 + π^2 + π^2 ) , m = π/β(π^2 + π^2 + π^2 ) , n = π/β(π^2 + π^2 + π^2 ) l = 0/5, m = (β5)/5, n = ( 0)/5 β΄ Direction cosines of the normal to the plane are = (0, β1, 0) And, Distance form the origin = π/β(π^2 + π^2 + π^2 ) = π/π