Check sibling questions

Slide22.JPG

Slide23.JPG
Slide24.JPG Slide25.JPG

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (i) π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚, 𝑏 βƒ— = 3𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + 2π‘˜ Μ‚, and 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚ , 𝑏 βƒ— = 3𝑖 Μ‚ – 𝑗 Μ‚ + 2π‘˜ Μ‚ , 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(2&βˆ’3&[email protected]&βˆ’1&[email protected]&2&βˆ’1)| = 2[(βˆ’1Γ—βˆ’1)βˆ’(2Γ—2) ] βˆ’ (βˆ’3) [(3Γ—βˆ’1)βˆ’(1Γ—2) ] + 4[(3Γ—2)βˆ’(1Γ—βˆ’1)] = 2 [1βˆ’4]+3(βˆ’3βˆ’2)+4[6+1] = 2(–3) + 3 (–5) + 4(7) = –6 – 15 + 28 = 7 Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (ii) π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚, 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, and 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚ , 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ , 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(1&βˆ’2&[email protected]&1&βˆ’[email protected]&1&βˆ’1)| = 1[(1Γ—βˆ’1)βˆ’(1Γ—βˆ’1)] βˆ’ (βˆ’2) [(2Γ—βˆ’1)βˆ’(2Γ—βˆ’1)] + 3[(2Γ—1)βˆ’(2Γ—1)] = 1 [βˆ’1+1]+2(βˆ’2+2)+3[2βˆ’2] = 1(0) + 2 (0) + 3(0) = 0

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.