Ex 16.3
Ex 16.3, 2
Ex 16.3, 3 (i) Important
Ex 16.3, 3 (ii)
Ex 16.3, 3 (iii)
Ex 16.3, 3 (iv)
Ex 16.3, 3 (v)
Ex 16.3, 4 Important
Ex 16.3 ,5 Important
Ex 16.3, 6
Ex 16.3, 7 Important
Ex 16.3, 8 Important
Ex 16.3, 9
Ex 16.3, 10
Ex 16.3, 11 Important
Ex 16.3, 12 (i) You are here
Ex 16.3, 12 (ii) Important
Ex 16.3, 13
Ex 16.3, 14 Important
Ex 16.3, 15 Important
Ex 16.3, 16 Important
Ex 16.3, 17
Ex 16.3, 18
Ex 16.3, 19
Ex 16.3, 20 Important
Ex 16.3, 21 Important
Ex 16.3
Last updated at Sept. 6, 2021 by Teachoo
Ex 16.3, 12 Check whether the following probabilities P(A) and P(B) are consistently defined P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6 P(A) & P(B) are consistently defined if P(A ∩ B) < P(A) & P(A ∩ B) < P(B) P(A ∪ B) > P(A) & P(A ∪ B) > P(B) Given P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6 Here, P(A ∩ B) > P(A). Hence, P(A) and P(B) are not consistently defined. Note: Here we use combination as order of numbers is not important So, n(S) = 38760 To win a prize, there is only 1 case when six numbers match Let A be the event of winning lottery So, n(A) = 1 Probability of winning lottery P(A) = (𝑛(𝐴))/(𝑛(𝑆)) = 𝟏/𝟑𝟖𝟕𝟔𝟎