

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 12.2
Ex 12.2, 2
Ex 12.2, 3
Ex 12.2, 4 (i) Important
Ex 12.2, 4 (ii)
Ex 12.2, 4 (iii) Important
Ex 12.2, 4 (iv)
Ex 12.2, 5
Ex 12.2, 6
Ex 12.2, 7 (i) Important
Ex 12.2, 7 (ii)
Ex 12.2, 7 (iii) Important
Ex 12.2, 8
Ex 12.2, 9 (i)
Ex 12.2, 9 (ii) Important
Ex 12.2, 9 (iii)
Ex 12.2, 9 (iv) Important
Ex 12.2, 9 (v)
Ex 12.2, 9 (vi)
Ex 12.2, 10 Important
Ex 12.2, 11 (i) You are here
Ex 12.2, 11 (ii) Important
Ex 12.2, 11 (iii) Important
Ex 12.2, 11 (iv)
Ex 12.2, 11 (v) Important
Ex 12.2, 11 (vi)
Ex 12.2, 11 (vii) Important
Last updated at May 29, 2023 by Teachoo
Ex 12.2, 11 Find the derivative of the following functions: (i) sin x cos x Let f (x) = sin x cos x. Let u = sin x & v = cos x ∴ f(x) = uv So, f’(x) = (uv)’ = u’v + v’u Here, u = sin x So, u’ = cos x (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑠𝑖𝑛〖𝑥=𝑐𝑜𝑠𝑥 〗) & v = cos x So, v’ = – sin x Now, f’(x) = (uv)’ = u’v + v’ u = cos x . cos x + ( – sin x) sin x = cos2x – sin2x = cos 2x Hence f’(x) = cos 2x (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑐𝑜𝑠〖𝑥=〖− 𝑠𝑖𝑛〗𝑥 〗) (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑐𝑜𝑠〖𝑥=〖− 𝑠𝑖𝑛〗𝑥 〗)