Ex 13.2, 11 - Find derivative: (i) sin x cos x (ii) sec x

Advertisement

Ex 13.2, 11 - Chapter 13 Class 11 Limits and Derivatives - Part 2

Advertisement

 

  1. Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)
  2. Serial order wise

Transcript

Ex 13.2, 11 Find the derivative of the following functions: (i) sin x cos x Let f (x) = sin x cos x. Let u = sin x & v = cos x ∴ f(x) = uv So, f’(x) = (uv)’ = u’v + v’u Here, u = sin x So, u’ = cos x (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑠𝑖𝑛⁡〖𝑥=𝑐𝑜𝑠⁡𝑥 〗) & v = cos x So, v’ = – sin x Now, f’(x) = (uv)’ = u’v + v’ u = cos x . cos x + ( – sin x) sin x = cos2x – sin2x = cos 2x Hence f’(x) = cos 2x (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑐𝑜𝑠⁡〖𝑥=〖− 𝑠𝑖𝑛〗⁡𝑥 〗) (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑐𝑜𝑠⁡〖𝑥=〖− 𝑠𝑖𝑛〗⁡𝑥 〗)

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.